100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Introduction to Probability Models (12th Edition) – Sheldon M. Ross – Complete Solution Manual Chapters 1–11 | Probability Models A+ Study Guide

Puntuación
-
Vendido
-
Páginas
235
Grado
A+
Subido en
07-01-2026
Escrito en
2025/2026

This document provides a complete solution manual for Introduction to Probability Models, 12th Edition by Sheldon M. Ross, covering Chapters 1–11. It includes clear, step-by-step solutions and explanations for core probability topics such as conditional probability, random variables, discrete and continuous distributions, Markov chains, Poisson processes, renewal theory, and queueing models, making it ideal for exams and coursework preparation.

Mostrar más Leer menos
Institución
Solution Manual
Grado
Solution Manual











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Solution Manual
Grado
Solution Manual

Información del documento

Subido en
7 de enero de 2026
Número de páginas
235
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Solution Manual For
Introduction to Probability Models,12th Edition by Sheldon M. Ross
Chapter 1-11
In IntroductionExams serve as a fundamental tool in evaluating a student's understanding of a subject, particularly in fields as diverse as business, law,
and mathematics. These disciplines troductionExams serve as a fundamental tool in evaluating a student's understanding of a subject, particularly in
fields as diverse as business, law, and mathematics. These disciplines


Chapter 1
1. S = { (R, R), (R, G),(R, B), (G, R), (G, G),(G, B), (B, R), (B, G),(B, B) }
The probability of each point in S is 1/9.
2. S = {(R, G),(R, B), (G, R), (G, B), (B, R), (B, G)}
3. S = {(e1, e 2 ,. .., en), n ≥ 2} where ei ∈(heads, tails}. In addition, en = en—1 =
heads and for i = 1 , . . . , n — 2 if ei = heads, then ei+1 = tails.
P{4 tosses}= P{(t, t, h, h)}+ P{(h, t, h, h)}
1 4 1
=2 =
2 8
4. (a) F(E ∪ G)c = FE c G c
(b) EFG c
(c) E F G
(d) EF EG FG
(e) EFG
(f) (E ∪ F ∪ G)c = E c F c G c
(g) (EF) c (EG) c (FG) c
(h) (EFG) c
5. 34 . If he wins, he only wins $1, while if he loses, he loses $3.
6. If E(F G) occurs, then E occurs and either F or G occur; therefore, either EF
or EG occurs and so

E(F ∪ G) ⊂ EF ∪ EG

,2


Similarly, if EF ∪ EG occurs, then either EF or EG occurs. Thus, E occurs and
either F or G occurs; and so E(F ∪ G) occurs. Hence,
EF ∪ EG ⊂ E(F ∪ G)
which together with the reverse inequality proves the result.
7. If (E F)c occurs, then E F does not occur, and so E does not occur (and so Ec
does); F does not occur (and so Fc does) and thus Ec and Fc both occur. Hence,

(E ∪ F)c ⊂ Ec Fc
If Ec Fc occurs, then Ec occurs (and so E does not), and Fc occurs (and so F does
not). Hence, neither E or F occurs and thus (E ∪ F)c does. Thus,
Ec Fc ⊂ (E ∪ F)c
IntroductionExams serve as a fundamental tool in evaluating a student's understanding of a subject, particularly in fields as
diverse as business, law, and mathematics. These disciplines

and the result follows.
8. 1 ≥ P(E ∪ F) = P(E) + P(F) — P(EF)
9. F = E ∪ FE c, implying since E and FE are disjoint that P(F) = P(E) +
c

P(FE) c .
10. Either by induction or use
n
c c c c c
∪ Ei = E1 ∪ E1 E2 ∪ E1 E2 E3 ∪ · · · ∪ E1 · · · En—1 En
1
and as each of the terms on the right side are mutually exclusive:
P( ∪ Ei ) = P(E 1 ) + P(E c E2) + P(E c Ec E3) + · · ·
i 1 1 2
c c
+ P(E 1 · · · En—1 En)
≤ P(E 1 ) + P(E 2 ) + · · · + P(E n ) (why?)

36
11. P{sum is i } =
i = 8 , . . . , 12
13—i
36 ,
12. Either use hint or condition on initial outcome as:

P{E before F }
= P{E before F |initial outcome is E }P(E)
+ P{E before F |initial outcome is F }P(F)
+ P{E before F |initial outcome neither E or F }[1 — P(E) — P(F)]
= 1 · P(E) + 0 · P(F) + P{E before F }
= [1 — P(E) — P(F)]
P(E)
Therefore, P{E before F } = P (E)+ P(F)
13. Condition an initial toss
12
P{win}= P{win|throw i }P{throw i }
i =2

, 3


Now,
P{win|throw i } = P{i before 7}
,
10 i = 2, 12
, i—
⎨ 5 1 i = 3,..., 6
,
=, +
13 i
1 i = 7, 11
19 — 1
where above is obtained by using Problems 11 and 12.

P{win}≈ .49.

14. P{ A wins}= P{ A wins on (2n + 1)st toss}
n=0

= (1 — P) P
n=0

=P [(1 — P) ]
n=0
1
=P
1 — (1 — P)2
P
=
2 P P2
1
=
2—P
P{B wins}= 1 — P{ A wins}
1— P
=
2— P
IntroductionExams serve as a fundamental tool in evaluating a student's understanding of a subject, particularly

in fields as diverse as business, law, and mathematics. These disciplines


16. P(E ∪ F) = P(E ∪ FE c )
= P(E) + P(FE )
c


since E and FE c are disjoint. Also,

P(E) = P(FE ∪ FE c )
= P(FE) + P(FE ) by disjointness
c


Hence,

P(E ∪ F) = P(E) + P(F) — P(EF)
17. Prob{end}= 1 — Prob{continue}
= 1 — P({H, H, H } ∪ {T, T, T })

, 4
1 1 1 1 1 1
Fair coin: Prob{end}= 1 —
· · + · ·
2 2 2 2 2 2
3
=
4 1 1 1 3 3 3
Biased coin: P{end}= 1 —
· · + · ·
4 4 4 4 4 4
9
=
16
18. Let B = event both are girls; E = event oldest is girl; L = event at least one is a girl.
P(BE) P(B) 1/4 1
(a) P(B|E) = = = =
P(E) P(E) 2
(b) P(L) = 1 — P(no girls) = 1 1 3,
— =
4 4
P(BL) P(B) 1/4 1
P(B|L) = = = =
P(L) P(L) 3
19. E = event at least 1 six P(E)
number of ways to get E 11
= =
number of samples pts 36
D = event two faces are different P(D)
= 1 — Prob(two faces the same)
6 5 P(E D) 10/36 1
=1— = P(E |D) = = =
36 6 P(D) 5/6 3
IntroductionExams serve as a fundamental tool in evaluating a student's understanding of a subject, particularly in fields as diverse as
business, law, and mathematics. These disciplines

20. Let E = event same number on exactly two of the dice; S = event all three numbers
are the same; D = event all three numbers are different. These three events are
mutually exclusive and define the whole sample space. Thus, 1= P(D)+ P(S) +
P(E), P(S) = = for D have six possible values for first die, five for
6/216 1/36;
second, and four for third.
∴ Number of ways to get D = 6 · 5 · 4 = 120.
P(D) = 120/216 = 20/36
∴ P(E) = 1 — P(D) — P(S)
20 1 5
=1— — =
36 36 12
21. Let C = event person is color blind.
P(C|Male)P(Male)
P(Male|C) =
P(C |Male P(Male) + P(C |Female)P(Female)
.05 × .5
=
.05 × .5 + .0025 × .5
2500 20
= =
2625 21
$21.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
UKStudent1
4.0
(2)

Conoce al vendedor

Seller avatar
UKStudent1 Duke University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
6
Miembro desde
5 meses
Número de seguidores
0
Documentos
554
Última venta
1 día hace

4.0

2 reseñas

5
1
4
0
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes