100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting Blok 2.2 Statistiek II: verklaren en voorspellen Moore McCabe & Craig

Puntuación
-
Vendido
1
Páginas
12
Subido en
05-03-2021
Escrito en
2020/2021

Complete samenvatting van het boek van Moore, McCabe & Craig: an introduction to the practice of statistics, hoofdstuk 2 + 9 t/m 13, uit jaar 2 van de bachelor psychologie aan de EUR. Bevat de belangrijkste termen, concepten, formules, berekeningen, etc.

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
Hoofdstuk 2, 8 t/m 13
Subido en
5 de marzo de 2021
Número de páginas
12
Escrito en
2020/2021
Tipo
Resumen

Temas

Vista previa del contenido

Blok 2.2 Statistiek II: verklaren en voorspellen MMC


Moore, McCabe & Craig samenvatting
Hoofdstuk 8: Inference for proportions

Inference for a single proportion
 SRS: simple random sample
 X = aantal successen
 p = populatie proportie
x
 p^ = = sample proportion of successes  schatting van p
n
 B(n,p) = binomiale verdeling, geldt als de populatie minstens 20x zo groot is als de sample

P wordt berekend door p^ = x/n. Als n groot genoeg is, is de sampling distribution van p^ ongeveer
normaal, met µp^ = p en σp^ = √ p (1− p)/n. 95% van de tijd zit p^ tussen 2√ p (1− p)/n van p.
¿
 Standard error of p^ = SEp^ = √ p(1− p ) /n
 Margin of error (c) = m = z* ± SEp^
- z* = standard normal density curve met gebied C tussen -z* en z*
 Level c betrouwbaarheidsinterval = p^ ± m  gebruik dit interval voor 90%, 95% of 99%
wanneer er minstens 10 successen en 10 falen zijn.

Plus-four confidence interval: gebruiken wanneer er minder dan 10 successen en falen zijn.
x+ 2
 p~ =
n+4
p (1− p )
 Met µp~ en σp~ =
√ n+ 4

p− p 0
Significantietoets voor proporties (p) = z = p 0(1− p 0)
√ n
Gebruik een large sample significance test als np0 (successen) en n(1-p0) (falen) allebei minstens 10
zijn.

z∗¿ 2
Sample size for a desired margin of error = n = ( ¿) p*(1-p*)
m
 z* = waarde voor betrouwbaarheidsniveau c
 p* = geschatte waarde voor proportie successen, is vaak 0.5
1 z∗¿ 2
 Dus je kunt vaak uitgaan van n = ( ) ( ¿)
4 m
 Rond je sample size altijd naar boven af (dus 1067.1 wordt n = 1068)

Comparing two proportions
Populatie Populatie Steekproefgrootte Succes Steekproef
proportie proportie
1 p1 n1 x1 p^1 = x1/n1
2 p2 n2 x2 p^2 = x2/n2

Verschil = D = p^1-p^2
 Mean = µD = µp^1-µp^2

, Blok 2.2 Statistiek II: verklaren en voorspellen MMC


p 1(1−p 1) p 2(1− p2)
 Variantie = σ2D = σ2p^1 – σ2p^2 = +
n1 n2
p 1(1− p 1) p 2 (1− p 2)
 SD = σD =

1
n1
1 2
+

p (1−p ) p (1−p )
2
n2



SED =
√ n1
+
n2
Margin of error voor c = m = z*SED
 Level c betrouwbaarheidsinterval = D ± m

Plus-four confidence interval: voeg 1 succes en 1 falen toe aan elke sample als deze minstens 5 zijn.
x 1+ x 2
 Pooled estimate of p = p^ =
n 1+n 2
1 1

¿

 Pooled SE = SEDP = p(1− p ) ( + )
n1 n2

p 1 − p2
Significantietoets voor het vergelijken van twee proporties = z =
SEDP

z∗¿ 2
Sample size for a desired margin of error = n = ( ¿) (p*1(1-p*1) + (p*2(1-p*2))
m

x1 x2
Margin of error = D = p^1-p^2 = +
n1 n2
1
 P*1 en p*2 zijn vaak 0.5 ( )
2
1 z∗¿ 2
 Dus je kunt vaak uitgaan van n = ( ) ( ¿)
2 m
1
p
Relatief Risico (RR) = 2 . Een relatief risico van 1 betekent dat p^1 en p^2 gelijk zijn.
p

Hoofdstuk 9: Inference for categorical data

Inference for two-way tables
 r x c tabel: twee-weg tabel voor counts met r = rows en c = columns
 Nulhypothese voor twee-weg tabel: er is GEEN associatie tussen de rij-variabele en de
kolom-variabele

Expected cell counts: de verwachte counts per cel, berekend onder de assumptie dat H0 waar is 
rijtotaal x kolomtotaal
tabeltotaal (n)

Chi-kwadraat toets voor populaties en onafhankelijkheid (x2) = ∑
(observed count−expected count)2
expected count
 Een grote waarde voor x2 betekent dat er veel bewijs is tegen H0
 Chi-kwadraat verdeling: steekproefverdeling van x 2, ervan uitgaande dat H0 waar is  deze
verdeling bevat alleen positieve waarden en is scheef naar rechts
- X2(df) met df = (r-1)(c-1)
$6.63
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
ThyraLisa Tilburg University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
113
Miembro desde
6 año
Número de seguidores
71
Documentos
72
Última venta
1 año hace

4.4

9 reseñas

5
5
4
3
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes