100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

2025 OCR A Level Further Mathematics B (MEI) Y420/01 Core Pure Verified Question Paper with Full Mark Scheme

Puntuación
-
Vendido
-
Páginas
52
Grado
A+
Subido en
05-01-2026
Escrito en
2025/2026

Download the verified 2025 OCR A Level Further Mathematics B (MEI) Y420/01 Core Pure question paper with the official marking scheme attached. Ideal for A Level revision, exam practice, and teacher use. PDF format.

Institución
OCR
Grado
OCR











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
OCR
Grado
OCR

Información del documento

Subido en
5 de enero de 2026
Número de páginas
52
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

2025 OCR A Level Further Mathematics B (MEI)
Y420/01 Core Pure
Verified Question paper with Marking Scheme Attached



Oxford Cambridge and RSA


Thursday 22 May 2025 – Afternoon A
Level Further Mathematics B (MEI) Y420/01 Core
Pure
Time allowed: 2 hours 40 minutes


You must have:
• the Printed Answer Booklet
• the Formulae Booklet for Further Mathematics B


QP
(MEI)
• a scientific or graphical calculator




INSTRUCTIONS
• Use black ink. You can use an HB pencil, but only for graphs and diagrams.
• Write your answer to each question in the space provided in the Printed Answer Booklet. If
you need extra space use the lined pages at the end of the Printed Answer Booklet. The
question numbers must be clearly shown.
• Fill in the boxes on the front of the Printed Answer Booklet.
• Answer all the questions.
• Where appropriate, your answer should be supported with working. Marks might be given
for using a correct method, even if your answer is wrong.
• Give your final answers to a degree of accuracy that is appropriate to the context.
• Do not send this Question Paper for marking. Keep it in the centre or recycle it.

INFORMATION
• The total mark for this paper is 144.
• The marks for each question are shown in brackets [ ].
• This document has 12 pages.

ADVICE
• Read each question carefully before you start your answer.




© OCR 2025 [Y/508/5592] OCR is an exempt Charity
DC (DE/SW) 355352/5 Turn over

, 2

Section A (33 marks)


1 The complex number z satisfies the equation z + 2iz* +1 - 4i = 0 .

You are given that z = x +iy, where x and y are real numbers.

Determine the values of x and y. [4]




2 In this question you must show detailed reasoning.

Find the acute angle between the planes 2x - y + 2z = 5 and x + 2y + z = 8. [4]




3 Using standard summation formulae, show that, for integers n H
1
1, 1 # 3 + 2 # 4 + ... + n # (n + 2) = 6 n (n + 1)(an + b),

where a and b are integers to be determined. [5]




4 (a) You are given that M and N are non-singular 2 # 2 matrices.

Write down the product rule for the inverse matrices of M, N and MN. [1]

(b) Verify this rule for the matrices M and N, where
J a 1NO J0 -1NO
M = KK O and N = KK and a and b are non-zero constants. [6]
0 1 1 bO
L P L P



5 The cubic equation 2x3 - 3x + 4 = 0 has roots a, b and c.
Determine a cubic equation with integer coefficients whose roots are 1 (a + 1), 1 (b + 1) and 1 (c + 1) .
2 2 2
[4]




© OCR 2025 Y420/01 Jun25

, 3

6 The figure below shows the curve with cartesian equation (x2 + y2) 2 = xy.

y




O x




(a) Show that the polar equation of the curve is r2 = a sin bi, where a and b are positive
constants to be determined. [3]

(b) Determine the exact maximum value of r. [2]

(c) Determine the area enclosed by one of the loops. [4]




© OCR 2025 Y420/01 Jun25 Turn over

, 4
Section B (111 marks)


7 In this question you must show detailed reasoning.
3
By first expressing
that
1
in partial fractions, show y 1
dx =
1
ln n , where m and n

x2 - 4 3 x2 - 4 m
are integers to be determined. [8]




8 The function f (x) is defined as f (x) = ln(1 + x), for x 2-1.

(a) Prove by mathematical induction that the nth derivative of f(x), f (n)(x), for all n H 1, is given
(-1) n+1 (n - 1)!
by f (n)(x) = . [4]
(1 + x) n

x 2 x3 (-1) n+1xn
(b) Hence prove that ln(1 + x) = x - 2 + 3 - ... + + ... for -1 1 x G 1.
n
[You are not required to show this series for ln(1 + x) converges for -1 1 x G 1.] [3]




© OCR 2025 Y420/01 Jun25
$8.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
OCRSOLUTIONS
5.0
(2)

Conoce al vendedor

Seller avatar
OCRSOLUTIONS Private
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
5
Miembro desde
8 meses
Número de seguidores
0
Documentos
63
Última venta
20 horas hace

5.0

2 reseñas

5
2
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes