79 79 79 79 79 79 79 79
And The Sciences 8th Ed by Jay L. Devore.
79 79 79 79 79 79 79 79
Chapter79179–79Overview79and79Descriptive79Statistics
SHORT79ANSWER
1. Give79one79possible79sample79of79size79479from79each79of79the79following79populations:
a. All79daily79newspapers79published79in79the79United79States
b. All79companies79listed79on79the79New79York79Stock79Exchange
c. All79students79at79your79college79or79university
d. All79grade79point79averages79of79students79at79your79college79or79university
ANS:
a. Houston79Chronicle,79Des79Moines79Register,79Chicago79Tribune,79Washington79Post
b. Capital79One,79Campbell79Soup,79Merrill79Lynch,79Pulitzer
c. John79Anderson,79Emily79Black,79Bill7 9 Carter,79Kay79Davis
d. 2.58.792.96,793.51,793.69
PTS:7 9 7 9 1
2. A79Southern79State79University79system79consists79of792379campuses.79An79administrator79wishes79to79make79an79
inference79about79the79average79distance79between79the79hometowns79of79students79and79their79campuses.79Describ
e79and79discuss79several79different79sampling79methods79that79might79be79employed.79Would79this79be79an79enume
rative79or79an79analytic79study?79Explain79your79reasoning.
ANS:
One79could79take79a79simple79random79sample79of79students79from79all79students79in79the79California79State79Univer
sity79system79and79ask79each79student79in79the79sample79to79report79the79distance79from79their79hometown79to79cam
pus.79Alternatively,79the79sample79could79be79generated79by79taking79a79stratified79random79sample79by79taking79a7
9simple79random79sample79from79each79of79the792379campuses79and79again79asking79each79student79in79the79sampl
e79to79report79the79distance79from79their79hometown79to79campus.
Certain79problems79might79arise79with79self79reporting79of79distances,79such79as79recording79error79or79poor79recall.79This
79study79is79enumerative79because79there79exists79a79finite,79identifiable79population79of79objects79from79which79to79sam
ple.
PTS:7 9 7 9 1
3. A79Michigan79city79divides79naturally79into79ten79district79neighborhoods.79How79might79a79real79estate79appraiser7
9select79a79sample79of79single-
family79homes79that79could79be79used79as79a79basis79for79developing79an79equation79to79predict79appraised79value7
9from79characteristics79such79as79age,79size,79number79of79bathrooms,79and79distance79to79the79nearest79school,79a
nd79so79on?7 9 Is79the79study79enumerative79or79analytic?
ANS:
One79could79generate79a79simple79random79sample79of79all79single79family79homes79in79the79city79or79a79stratified79r
andom79sample79by79taking79a79simple79random79sample79from79each79of79the791079district79neighborhoods.79From
79each79of79the79homes79in79the79sample79the79necessary79variables79would79be79collected.79This79would79be79an79
enumerative79study79because79there79exists79a79finite,79identifiable79population79of79objects79from79which79to79sam
ple.
, PTS:7 9 7 9 1
4. An79experiment79was79carried79out79to79study79how79flow79rate79through79a79solenoid79valve79in79an79automobile‘s
79pollution-
control79system79depended79on79three79factors:7 9 armature79lengths,79spring79load,79and79bobbin79depth.7 9 Two79d
ifferent79levels79(low79and79high)79of79each79factor79were79chosen,79and79a79single79observation79on79flow79was79
made79for79each79combination79of79levels.
a. The79resulting79data79set79consisted79of79how79many79observations?
b. Is79this79an79enumerative79or79analytic79study?79Explain79your79reasoning.
ANS:
a. Number79observations79equal7927979 2797 9 2=8
b. This79could79be79called79an79analytic79study79because79the79data79would79be79collected79on79an79e
xisting79process.79There79is79no79sampling79frame.
PTS:7 9 7 9 1
5. The79accompanying79data79specific79gravity79values79for79various79wood79types79used79in79construction79.
.41 .41 .42 .42. .42 .42 .42 .43 .44
.54 .55 .58 .62 .66 .66 .67 .68 .75
.31 .35 .36 .36 .37 .38 .40 .40 .40
.45 .46 .46 .47 .48 .48 .48 .51 .54
Construct79a79stem-and-
leaf79display79using79repeated79stems79and79comment79on79any79interesting79features79of79the79display.
ANS:
One79method79of79denoting79the79pairs79of79stems79having79equal79values79is79to79denote79the79stem79by79L,79for79‗l
ow‘79and79the79second79stem79by79H,79for79‗high‘.7 9 Using79this79notation,79the79stem-and-
leaf79display79would79appear79as79follows:
3L 1 stem:79tenth
s
3H 56678 leaf:7 9 hundredths
4L 000112222234
5L 144
5H 58
6L 2
6H 6678
7L
7H 5
The79stem-and-
leaf79display79on79the79previous79page79shows79that79.4579is79a79good79representative79value79for79the79data.7 9 In79
addition,79the79display79is79not79symmetric79and79appears79to79be79positively79skewed.7 9 The79spread79of79the79data
79is79.7579-
79.3179=79.44,79which79is79.44/.4579=79.97879or79about7998%79of79the79typical79value79of79.45.7 9 This79constitutes79
a79reasonably79large79amount79of79variation79in79the79data.7 9 The79data79value79.7579is79a79possible79outlier.
PTS:7 9 7 9 1
6. Temperature79transducers79of79a79certain79type79are79shipped79in79batches79of7950.7 9 A79sample79of796079batches
79was79selected,79and79the79number79of79transducers79in79each79batch79not79conforming79to79design79specificatio
ns79was79determined,79resulting79in79the79following79data:
0 1 1 3 4 1 2 3 2 2 8 4 5 1 3 1
47 9 7 9 27 9 7
9 17 9 7 9 3
,2 1 3 2 0 5 3 3 1 3 2 4 7 0 2 3
17 9 7 9 27 9 7
9 47 9 7 9 0
5 1 0 6 4 2 1 6 0 3 3 3 6 1 2 3
07 9 7 9 27 9 7
9 37 9 7 9 2
, a. Determine79frequencies79and79relative79frequencies79for79the79observed79values79of79x79=79number79of
nonconforming79transducers79in79a79batch.
b. What79proportion79of79batches79in79the79sample79has79at79most79four79nonconforming79transducers?79What79
proportion79has79fewer79than79four?79What79proportion79has79at79least79four79nonconforming79units?
ANS:
a.
Number79Nonconforming Frequency Relative79Frequency
0 7 0.117
1 12 0.200
2 13 0.217
3 14 0.233
4 6 0.100
5 3 0.050
6 3 0.050
7 1 0.017
8 1 0.017
1.001
The79relative7 9 frequencies79don’t79add79up79exactly79to791because79they79have79been79rounded
b.79The79number79of79batches79with79at79most79479nonconforming79items79is797+12+13+14+6=52,79which79is79a79pr
oportion79of7952/60=.867.79The79proportion79of79batches79with79(strictly)79fewer79than79479nonconforming79item
s79is7946/60=.767.
PTS:7 9 7 9 1
7. The79number79of79contaminating79particles79on79a79silicon79wafer79prior79to79a79certain79rinsing79process79was79de
termined79for79each79wafer79in79a79sample79size79100,79resulting79in79the79following79frequencies:
Number79of7 9 particles Frequency Number79of7 9 particles Frequency
0 1 8 12
1 2 9 4
2 3 10 5
3 12 11 3
4 11 12 1
5 15 13 2
6 18 14 1
7 10
a. What79proportion79of79the79sampled79wafers79had79at79least79two79particles?79At79least79six79particles?
b. What79proportion79of79the79sampled79wafers79had79between79four79and79nine79particles,79inclusive?79Strictly79be
tween79four79and79nine79particles?
ANS:
a. From79this79frequency79distribution,79the79proportion79of79wafers79that79contained79at79least79two79particles79is79(100-
1-2)/10079=
.97,79or7997%.79In79a79similar79fashion,79the79proportion79containing79at79least79679particles79is79(10079–791-2-
3-12-11-15)/10079=7956/10079=79.56,79or7956%.
b. The79proportion79containing79between79479and79979particles79inclusive79is79(11+15+18+10+12+4)/10079=7970/
10079=79.70,79or7970%.79The79proportion79that79contain79strictly79between79479and79979(meaning79strictly79mor
e79than79479and79strictly79less79than799)79is79(15+7918+10+12)/100=7955/10079=79.55,79or7955%.