100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

COMP 682 Data Mining Final Exam Questions and Answers 2026

Puntuación
-
Vendido
-
Páginas
27
Grado
A
Subido en
01-01-2026
Escrito en
2025/2026

1 Precision (a or positive) or Positive Predictive Value (PPV) TP/(TP+FP) Positive Predictive Value (PPV) = TP/(TP+FP) 2 Precision (b or negative) or Negative Predictive Value (NPV) TN/(TN+FN) Negative Predictive Value (NPV) = TN/(TN+FN) 3 Recall (a or positive) = True Positive Rate (a) or TPR(a) Sensitivity =TP/(TP+FN) 4 Recall (b or negative) = True Negative Rate (b) Specificity = TN/(TN+FP) 5 F-MEASURE OR F-SCORE 3 items (2 bullet points and the formula) 1) The harmonic mean of precision and recall. 2) It can be used as a single measure of class performance. 3) F-measure (a) = (2 x Precision x Recall) / (Precision + Recall) 6 Accuracy how close a measurement is to the true value 7 Accuracy is the overall ___________________ of the model and is calculated as the sum of __________________________ divided by the total number of ______________________________. Accuracy is the overall [correctness] of the model and is calculated as the sum of [correct classifications] divided by the total number of [classifications]. 8 Accuracy Formula Accuracy = (TP+TN) /TOTAL Classifications 9 True Positive Rate or True Positive Rate (a) TP / TP + FN 10 True Negative Rate or True Negative Rate (b) TN / TN + FP 11 R formula for splitting data (On Practice Exam 1) intrain <- createDataPartition(y = df$variable, p=%, list=FALSE) train_df <- df[inTrain,] test_df <- df[-inTrain,] OR train_target <- df[inTrain,8] test_target <- df[-inTrain,8] train_input <- df[inTrain,-8] test_input <- nadf-inTrain,-8] 12 R formula for C5.0 C5.0(df$target_variable~., df, control = C5.0Control(CF = .###)) 13 C5.0 Confidence Factor (CF) A value between 0 and 1 that indicates the confidence with which this prediction is made. Decreasing the confidence factor will decrease the tree size, specifically the nodes 14 Draw a CONFUSION MATRIX (CONTINGENCY TABLE)

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
1 de enero de 2026
Número de páginas
27
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

COMP682



COMP 682 Data Mining Final Exam
Questions and Answers 2026
1

Precision (a or positive)

or

Positive Predictive Value (PPV)

TP/(TP+FP)



Positive Predictive Value (PPV) = TP/(TP+FP)



2

Precision (b or negative)

or

Negative Predictive Value (NPV)

TN/(TN+FN)



Negative Predictive Value (NPV) = TN/(TN+FN)



3

Recall (a or positive) = True Positive Rate (a) or TPR(a)

Sensitivity =TP/(TP+FN)



4

Recall (b or negative) = True Negative Rate (b)

Specificity = TN/(TN+FP)



5



COMP682

,COMP682


F-MEASURE OR F-SCORE

3 items (2 bullet points and the formula)

1) The harmonic mean of precision and recall.



2) It can be used as a single measure of class performance.



3) F-measure (a) = (2 x Precision x Recall) / (Precision + Recall)



6

Accuracy

how close a measurement is to the true value



7

Accuracy is the overall ___________________ of the model and is calculated as the sum of
__________________________ divided by the total number of ______________________________.

Accuracy is the overall [correctness] of the model and is calculated as the sum of [correct
classifications] divided by the total number of [classifications].



8

Accuracy Formula

Accuracy = (TP+TN) /TOTAL Classifications



9

True Positive Rate or True Positive Rate (a)

TP / TP + FN



10

True Negative Rate or True Negative Rate (b)

TN / TN + FP




COMP682

, COMP682




11

R formula for splitting data



(On Practice Exam 1)

intrain <- createDataPartition(y = df$variable, p=%, list=FALSE)



train_df <- df[inTrain,]

test_df <- df[-inTrain,]



OR



train_target <- df[inTrain,8]

test_target <- df[-inTrain,8]

train_input <- df[inTrain,-8]

test_input <- nadf-inTrain,-8]



12

R formula for C5.0

C5.0(df$target_variable~., df, control = C5.0Control(CF = .###))



13

C5.0 Confidence Factor (CF)

A value between 0 and 1 that indicates the confidence with which this prediction is made.



Decreasing the confidence factor will decrease the tree size, specifically the nodes



14

Draw a CONFUSION MATRIX (CONTINGENCY TABLE)


COMP682
$16.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
PossibleA Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
988
Miembro desde
4 año
Número de seguidores
650
Documentos
12745
Última venta
6 días hace
POSSIBLEA QUALITY UPDATED EXAMS

Choose quality study materials for nursing schools to ensure success in your studies and future career. "Welcome to PossibleA - your perfect study assistant! Here you will find Quality sheets, study materials, exams, quizzes, tests, and notes to prepare for exams and study successfully. Our store offers a wide selection of materials on various subjects and difficulty levels, created by experienced teachers and checked for quality. Our quality sheets are an easy and quick way to remember key points and definitions. And our study materials, tests, and quizzes will help you absorb the material and prepare for exams. Our store also has notes and lecture summaries that will help you save time and make the learning process more efficient.

Lee mas Leer menos
3.9

141 reseñas

5
74
4
25
3
20
2
1
1
21

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes