100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Solutions Manual Micro - and Nanoscale Fluid Mechanics Transport in Microfluidic Devices by Brian J. Kirby

Puntuación
-
Vendido
-
Páginas
304
Grado
A+
Subido en
30-12-2025
Escrito en
2025/2026

This is a complete solutions manual PDF for Micro - and Nanoscale Fluid Mechanics Transport in Microfluidic Devices by Brian J. Kirby. It provides detailed, step-by-step answers to all exercises and problems.

Institución
Fluid Mechanics
Grado
Fluid Mechanics











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Fluid Mechanics
Grado
Fluid Mechanics

Información del documento

Subido en
30 de diciembre de 2025
Número de páginas
304
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Solutions Manual
Micro - and Nanoscale Fluid Mechanics Transport in Microfluidic Devices

By
Brian J. Kirby

( All Chapters Included - 100% Verified Solutions )




1

,CHAPTER 1. KINEMATICS, CONSERVATION EQUATIONS, AND BOUNDARY
CONDITIONS FOR INCOMPRESSIBLE FLOW
Soln Manual, July 21, 2010 http://www.cambridge.org/kirby



For moving interfaces with uniform surface tension separating Newtonian fluids, the tan-
gential stress is matched on either side of the interface:
   
∂ut,1 ∂un,1 ∂ut,2 ∂un,2
η1 + = η2 + . (1.77)
∂n ∂t ∂n ∂t



1.11 Supplementary reading
Modern introductory texts that cover the basic fluid mechanical equations include Fox,
Pritchard, and McDonald [17], Munson, Young, and Okiishi [18], White [19], and Bird,
Stewart, and Lightfoot [20]. These texts progress through this material more methodi-
cally, and are a good resource for those with minimal fluids training. More advanced treat-
ment can be found in Panton [21], White [22], Kundu and Cohen [23], or Batchelor [24].
Batchelor provides a particularly lucid description of the Newtonian approximation, the
fundamental meaning of pressure in this context, and why its form follows naturally from
basic assumptions about isotropy of the fluid. Texts on kinetic theory [25, 26] provide a
molecular-level description of the foundations of the viscosity and Newtonian model.
Although the classical fluids texts are excellent sources for the governing equations,
kinematic relations, constitutive relations, and classical boundary conditions, they typically
do not treat slip phenomena at liquid–solid interfaces. An excellent and comprehensive
review of slip phenomena at liquid–solid interfaces can be found in [27] and the references
therein. Slip in gas–solid systems is discussed in [3].
The treatment of surface tension in this chapter is similar to that found in basic fluids
texts [21, 24] but omits many critical topics, including surfactants. Reference [28] covers
these topics in great detail and is an invaluable resource. References [29, 30] cover flows
owing to surface tension gradients, e.g., thermocapillary flows. A detailed discussion of
boundary conditions is found in [31].
Although porous media and gels are commonly used in microdevices, especially for
chemical separations, this text focuses on bulk fluid flow in micro- and nanochannels and
omits consideration of flow through porous media and gels. Reference [29] provides one
source to describe these flows. Another fascinating rheological topic that is largely omit-
ted here is the flow of particulate suspensions and granular systems, with blood being a
prominent example. Discussions of biorheology can be found in [23], and colloid science
texts [29, 32] treat particulate suspensions and their rheology.


1.12 Exercises
1.1 In general, the sum of the extensional strains (εxx + εyy + εzz ) in an incompressible
system always has the same value. What is this value? Why is this value known?
Ans: The sum of extensional strains is zero, because the sum of extensional strains is

Micro- and Nanoscale Fluid Mechanics, c Brian J. Kirby 53 http://www.kirbyresearch.com/textbook




2

, CHAPTER 1. KINEMATICS, CONSERVATION EQUATIONS, AND BOUNDARY
CONDITIONS
Soln Manual,
http://www.cambridge.org/kirby July 21, 2010 FOR INCOMPRESSIBLE FLOW



proportional to the local change in volume of the flow. Thus for incompressible flow,
cons of mass indicates that the sum of these strains is zero.


1.2 For a 2D flow (no z velocity components and all derivatives with respect to z are
zero),
write the components rate tensor ~~ε in terms of velocity derivatives.
 of thestrain
∂u 1 ∂u
+ ∂v 0
  ∂x  2 ∂y ∂x 
Ans:  1 ∂u + ∂v
 ∂v
0

2 ∂y ∂x ∂y 
0 0 0



1.3 Given the following strain rate tensors, draw a square-shaped fluid element and then
show the shape that fluid element would take after being deformed by the fluid flow.
 
1 0 0
(a) ~
~ε =  0 −1 0  .
0 0 0
 
−1 0 0
(b) ~
~ε =  0 1 0  .
0 0 0
 
0 1 0
(c) ~
~ε =  1 0 0  .
0 0 0

Ans: See Fig. 1.24.




Figure 1.24: Fluid deformation owing to strain rate tensor.



http://www.kirbyresearch.com/textbook 54 Micro- and Nanoscale Fluid Mechanics, c Brian J. Kirby




3

, CHAPTER 1. KINEMATICS, CONSERVATION EQUATIONS, AND BOUNDARY
CONDITIONS FOR INCOMPRESSIBLE FLOW
Soln Manual, July 21, 2010 http://www.cambridge.org/kirby



1.4 The following strain rate tensor is not valid for incompressible flow. Why?
 
1 1 1
~~ε =  1 1 1  . (1.78)
1 1 1

Ans: The sum of the extensional strains is nonzero; thus this violates conservation
of mass


1.5 Could the following tensor be a strain rate tensor? If yes, explain the two properties
that this tensor satisfies that make it valid. If no, explain why this tensor could not be
a strain rate tensor.  
1 1 1
~~ε =  1 0 −1  . (1.79)
−1 1 −1
Ans: No. This tensor is not symmetric.


1.6 Consider an incompressible flow field in cylindrical coordinates with axial symmetry
(for example, a laminar jet issuing from a circular orifice). The axial symmetry im-
plies that the flow field is a function of and z but not θ. Can a stream function be
derived for this case? If so, what is the relation between the derivatives of the stream
function and the and z velocities?



Solution: Yes. conservation of mass in axisymmetric coordinates is:

∇ ·~u = 0 (1.80)
1 ∂ ∂
u + uz = 0 (1.81)
∂ ∂z
now we need to define a stream function ψ such that, if u and uz are defined in terms
of this stream function, conservation of mass is satisfied automatically. If we define
ψ such that
∂ψ
= uz (1.82)

and
∂ψ
= −u , (1.83)
∂z
which is similar to what we use for Cartesian coordinates, this will not work. There
is still an inside the ∂∂ derivative for the radial term.
Instead, try defining ψ such that

Micro- and Nanoscale Fluid Mechanics, c Brian J. Kirby 55 http://www.kirbyresearch.com/textbook




4
$29.48
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
reckmila

Conoce al vendedor

Seller avatar
reckmila Massachusetts Institute Of Technology
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
8
Miembro desde
4 meses
Número de seguidores
0
Documentos
87
Última venta
5 días hace
Miss Fullmark

High-quality solutions manuals crafted to help you master every chapter and score full marks.

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes