100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting voor het vak 'Data Science'

Puntuación
-
Vendido
1
Páginas
93
Subido en
29-12-2025
Escrito en
2025/2026

Volledige samenvatting van het vak 'data science' gedoceerd door Prof. Verboven S. Alle hoorcollege's en zelfstudie + gastlezingen

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
Subido en
29 de diciembre de 2025
Número de páginas
93
Escrito en
2025/2026
Tipo
Resumen

Temas

Vista previa del contenido

Fundamental of Data Science
Introduction

Fundamental concepts of data science
AI models can be useful in various situations
° complex pattern recognition
° can make very detailed videos AI can help with decision making
° goof at coding BUT need to understand how it works before you rely on it
° use of data to predict the future -> always need to stay critical
°… -> the use of filters that we as human cannot see can have an
impact on the output of the model


Terminology
• Classic business intelligence
= you know what you are looking for
>> querying
you write a question and get an answer
>> OLAP (Online Analytical Processing)
pre computes interesting dimensions of big raw data bases

• Data science
= extracts knowledge from data

• Data mining
= activity of extracting data / focus on finding hidden patterns or relationships

• Big data
= data which is so large that a standard program cannot handle it because of a lack in
storage or too much variety in data types

• Artificial Intelligence (AI) ! has a very vague definition !
= group of techniques that machines use to achieve intelligent behaviours

• Machine learning
= Subset of AI that improve with data

• Deep learning
= subset of machine learning which uses neural network technology
-> useful for very complex computation

Applications
- demand forecasting systems used by Colruyt
- getting accurate risk assessment ex. used by banks by giving out a loan
-…
BUT privacy may be a concern
-> the more data is put into the model, the more accurate it is BUT the less privacy you have


1

,? What is data ?
the basis of all systems is DATA
Everything that can be stored in bits and bites
-> can be structured ex. table
-> can be unstructured ex. text
Data is a valuable asset since it can help with better decision making

! important to know !
data itself is not valuable BUT the real value lies in extracting meaningful information from it

? What is a model ?
model = abstract representation of (a part of) reality
BUT the usefulness of a model depends on what you want to communicate
-> need to choose well which parts of reality need to be captured in the model
example
linear regression is a model
-> is all about finding a function for given parameters
BUT we will have an error
= explains how well you model fits reality
(difference between model and reality)

Types of machine learning
There are 3 types of machine learning
! on exam you need to be able to select the right model type for a certain case !

• SUPERVISED LEARNING
= main application of machine learning
° there is a target variable ‘y’
° you have historical values ‘y’
° if y discrete = classification: binary or categorical (nominal/ordinal)
° if y continuous = regression
° often used for a prediction (estimation of an unknown value)

• UNSUPERVISED LEARNING
° there is no target variable ‘y’
° don’t have historical values ‘y’
° multiple ways to extract information from data
- anomaly detection: how different is observation x in comparison to the others
-> looking for outliers
-> can be useful to detect fraudulent actions
- clustering: making groups of similar observations
- generative models: have existing set of inputs and want to generate more realistic
(special case) input (= same distribution)




2

, • REINFORCEMENT LEARNING
= has no real dataset, learn through interaction with environment
! almost never used in business context !
reasons
° the added value of it in business is small in comparison to the others
° no model but an agent (learns from trial and error)
° trial and error not suitable in a real business world
° works only if you have a very good simulator (often not the case)

exercise

detecting fraudulent transactions
-> classification if huge number of historical transactions (supervised)
OR
-> unsupervised if no historical transactions

predict future income
-> supervised because you have a target = income
-> regression because ‘y’ is a continuous variable
! cannot be unsupervised because you need historical data !

detection degree of burn
-> supervised learning (multi class classification) if historical data
OR
-> unsupervised based on clusters

Composing new music based on existing music
-> generative because need to learn the distribution of existing music to make a new one

Supervised vs. unsupervised learning

° if you have historical data of high quality and clear labels
THEN supervised is better
° if proxy’s need to be made and you have only raw data (without labels)
THEN unsupervised is better

CRISP-DM
= Cross Industry Standard Process for Data Mining
-> structures the process starting with a problem to end with a solution
is an iterative process since it always need to be adapted to a changing environment
1. What is the actual business problem and which data needed
2. Need to understand gathered data
3. Preparing data for algorithm
! depending on the algorithm, different data types are needed !
4. Creating the model
5. Evaluation how trustful model is
6. Deployment




3

, Exercise – churn predictions (= customers leaving the company)

Attracting new customers is more costly than keeping existing ones
SO want data that predicts churn in order to keep those customers
could therefore use historical data ex. why did a customer left
-> sometimes there is a gap between the data you would like to gather and the data you have
= supervised classification algorithm (churn/ no churn)
BUT therefore we need a label
-> need to make a choice at what moment someone is seen as ‘churn’
! the chosen data and the chosen label already has an impact on the solution !

! interesting !
the churn prediction model is the most developed model
-> almost all big companies are using it because of the huge value




4
$9.74
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
amelielaga Vrije Universiteit Brussel
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
26
Miembro desde
3 año
Número de seguidores
4
Documentos
11
Última venta
1 día hace

2.0

2 reseñas

5
0
4
0
3
1
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes