100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Summary The Plasma Membrane - Cell Biology

Puntuación
-
Vendido
-
Páginas
6
Subido en
26-01-2021
Escrito en
2019/2020

Notes on the plasma membrane for Imperial College London's 1st year cell biology module from the Biochemistry BSc course, with summary notes for each learning outcome.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
First year material from the plasma membrane chapter
Subido en
26 de enero de 2021
Número de páginas
6
Escrito en
2019/2020
Tipo
Resumen

Temas

Vista previa del contenido

The Plasma Membrane

Learning outcomes:
 How are membranes used by cells?
 What are cell membranes made of?
 What is an amphipathic lipid and how does its structure influence the properties of cell
membranes?
 What are some roles that water plays in cell membrane function?
 Are membrane lipids static? How can they move?
 How can the lipid composition of cell membranes change with temperature?
 How can a cell use membrane lipid asymmetry?
 How can membrane proteins associate with the plasma membrane?
 What is the significance of hydrophobic stretches in transmembrane proteins?
 What is glycosylation and what are some functions of membrane protein glycosylation?



 How are membranes used by cells?


Defines the boundaries around and within the cell – separates ICF and ECF
e.g. lipid bilayer prevents free movement of charged ions into the cell – movement
of ions regulated by hydrophilic protein channels

Maintains essential differences between cytosol and ECF – concentration gradients
e.g. sodium-potassium pump creates EC gradient – needed for depolarisation

Maintains essential differences between cytosol and environment inside organelles
e.g. proton gradient between mitochondrial membranes – needed for ATP synthesis


Involved in cell adhesion, cell signalling


Used as an attachment surface for cytoskeleton and ECM



 What are cell membranes made of?


All biological membranes have a common general structure: lipid bilayer with membrane
proteins

The lipid bilayer: Basic structure for all cell membranes
Membrane proteins: determine cell membrane characteristics, perform specific tasks, vary
in structure and in association with the lipid bilayer

,  What is an amphipathic lipid and how does its structure influence the properties of cell
membranes?

Amphipathic: a molecule which contains both a hydrophilic part and a hydrophobic part
Amphiphilic: a molecule which contains both a hydrophilic part and a hydrophobic part
(Amphipathic and amphiphilic are interchangeable)

All the lipid molecules in cell membranes are amphiphilic:
e.g. phospholipids (most abundant membrane lipid) have:
Hydrophilic head group containing a phosphate group
2 hydrophobic hydrocarbon tails

Hydrocarbon tails (usually fatty acids in animal, plant & bacterial cells):
Differ in length (normally 14-24 C atoms)
One tail typically has 1+ CIS double bond – kink in chain


Structure Properties Why?
Amphipathic nature Phospholipid bilayer Hydrophobic tails aggregate together to shield
spontaneously forms from water, hydrophilic heads exposed to water.

Bilayer > dispersed because dispersed
phospholipids force adjacent water molecules to
reorganize into ice-like cage structures around
the molecule. More ordered, entropy decreases,
free energy increases ∴ not feasible. If
Hydrophobic tails cluster together, free-energy
cost minimized because number of water
molecules that become more ordered decreases.

Sealed compartment Free edges in bilayer energetically unfavorable
spontaneously forms (results in ordering of water molecules). Bilayer
closes in on itself to avoid having free edges
forming sealed compartment

2 hydrocarbon tails Bilayer > micelle Micelle forms when amphiphilic molecule is cone-
shaped (i.e. head attached to one HC tail), bilayer
forms when amphiphilic molecule is cylindrical
(i.e. “ “ 2 HC tails).
Variable Longer tail = less fluid Longer tails (more C atoms in chain) form
length/saturation of membrane and VV stronger VDW interactions because there is a
hydrocarbon tails greater surface area for lipid tails to interact.

More C=C bonds = More double bonds (more kinked chain) means
more fluid membrane lipids don’t pack together as closely, weaker VDW
and VV interactions form.
7,98 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
BioChemBeebs

Conoce al vendedor

Seller avatar
BioChemBeebs Dubai college
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
7 año
Número de seguidores
0
Documentos
1
Última venta
-

0,0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes