100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual for A First Course in Abstract Algebra, 8th Edition by John B. Fraleigh & Neal E. Brand

Puntuación
-
Vendido
-
Páginas
320
Grado
A+
Subido en
25-10-2025
Escrito en
2025/2026

This is the complete Solution Manual for A First Course in Abstract Algebra, 8th Edition, by John B. Fraleigh and Neal E. Brand. It provides detailed, step-by-step answers for exercises across All Chapters of the textbook, serving as an invaluable study aid for students and instructors. The manual covers a wide range of topics in depth, including: Groups and Subgroups Permutations, Cosets, and Direct Products Homomorphisms and Factor Groups Rings and Fields Ideals and Factor Rings Extension Fields and Galois Theory Advanced Group Theory and Groups in Topology Use this resource to check your work, gain a deeper understanding of complex abstract algebra concepts, and master the material.

Mostrar más Leer menos
Institución
A First Course In Abstract Algebra
Grado
A First Course in Abstract Algebra











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
A First Course in Abstract Algebra
Grado
A First Course in Abstract Algebra

Información del documento

Subido en
25 de octubre de 2025
Número de páginas
320
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

SOLUTION MANUAL
First Course in Abstract Algebra A
8th Edition by John B. Fraleigh
All Chapters Full Complete

, CONTENTS
0. SetsH andH Relations 1

I. Groups and Subgroups
H H




1. IntroductionH andH Examples 4
2. BinaryH Operations 7
3. IsomorphicH BinaryH Structures 9
4. Groups 13
5. Subgroups 17
6. CyclicH Groups 21
7. GeneratorsH andH CayleyH Digraphs 24

II. Permutations, Cosets, and Direct Products
H H H H




8. GroupsH ofH Permutations 26
9. Orbits,HCycles,HandHtheHAlternatingHGroups 30
10. CosetsH andH theH TheoremH ofH Lagrange 34
11. DirectH ProductsH andH FinitelyH GeneratedH AbelianH Groups 37
12. PlaneH Isometries 42

III. Homomorphisms and Factor Groups H H H




13. Homomorphisms 44
14. FactorH Groups 49
15. Factor-GroupH ComputationsH andH SimpleH Groups 53
16. GroupH ActionHonHaHSet 58
17. ApplicationsHofHG-SetsHtoHCounting 61

IV. Rings and Fields H H




18. RingsH andH Fields 63
19. IntegralH Domains 68
20. Fermat’sH andH Euler’sH Theorems 72
21. TheH FieldH ofH QuotientsH ofH anH IntegralH Domain 74
22. RingsH ofH Polynomials 76
23. FactorizationHofHPolynomialsHoverHaHField 79
24. NoncommutativeH Examples 85
25. OrderedH RingsH andH Fields 87

V. Ideals and Factor Rings
H H H




26. HomomorphismsH andH FactorH Rings 89
27. PrimeHandHMaximalHIdeals 94
28. Gröbner HBasesHforHIdeals 99

, VI. Extension Fields
H




29. IntroductionHtoHExtensionHFields 103
30. VectorH Spaces 107
31. AlgebraicH Extensions 111
32. GeometricHConstructions 115
33. FiniteH Fields 116

VII. Advanced Group Theory
H H




34. IsomorphismHTheorems 117
35. SeriesHofHGroups 119
36. SylowH Theorems 122
37. ApplicationsH ofH theH SylowH Theory 124
38. FreeH AbelianH Groups 128
39. FreeHGroups 130
40. GroupH Presentations 133

VIII. Groups in Topology
H H




41. SimplicialH ComplexesH andH HomologyH Groups 136
42. ComputationsH ofH HomologyH Groups 138
43. MoreH HomologyH ComputationsH andH Applications 140
44. HomologicalH Algebra 144

IX. Factorization
45. UniqueH FactorizationH Domains 148
46. EuclideanH Domains 151
47. GaussianH IntegersH andH MultiplicativeH Norms 154

X. Automorphisms and Galois Theory
H H H




48. AutomorphismsH ofH Fields 159
49. TheH IsomorphismH ExtensionH Theorem 164
50. SplittingH Fields 165
51. SeparableHExtensions 167
52. TotallyHInseparableHExtensions 171
53. GaloisH Theory 173
54. IllustrationsHofHGaloisHTheory 176
55. CyclotomicHExtensions 183
56. InsolvabilityH ofH theH Quintic 185

APPENDIXH MatrixH Algebra 187


iv

, 0.H SetsHandHRelations 1

0. Sets and Relations
H H


√ √
1. { 3,H − 3} 2.H TheH setH isH empty.

3.H {1,H−1,H2,H−2,H3,H−3,H4,H−4,H5,H−5,H6,H−6,H10,H−10,H12,H−12,H15,H−15,H20,H−20,H30,H−30,
60,H−60}

4.H {−10,H−9,H−8,H−7,H−6,H−5,H−4,H−3,H−2,H−1,H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11}

5. ItHisHnotHaHwell-
definedHset.H (SomeHmayHargueHthatHnoHelementHofHZ+HisHlarge,HbecauseHeveryHelementHexceedsHonlyHaH
finiteHnumberHofHotherHelementsHbutHisHexceededHbyHanHinfiniteHnumberHofHotherHelements.HSuchHpeopl
eHmightHclaimHtheHanswerHshouldHbeH∅.)

6. ∅ 7.H TheH setH isH ∅H becauseH 33H=H27H andH 43H=H64.

8.H ItH isH notH aH well-definedH set. 9.H Q

10. TheH setH containingH allH numbersH thatH areH (positive,H negative,H orH zero)H integerH multiplesH ofH 1,H 1/2,H
orH1/3.

11. {(a,H1),H (a,H 2),H (a,H c),H (b,H1),H (b,H2),H(b,H c),H (c,H1),H (c,H2),H(c,H c)}

12. a.H ItHisHaHfunction.H ItHisH notHone-to-
oneHsinceHthereHareHtwoHpairsHwithHsecondHmemberH4.H ItHisHnotHonto
BH becauseHthereHisH noHpairHwithHsecondHmemberH2.
b. (SameH answerH asH Part(a).)
c. ItH isH notH aH functionH becauseH thereH areH twoH pairsH withH firstH memberH 1.
d. ItH isH aH function.H ItH isH one-to-
one.H ItH isH ontoH BH becauseH everyH elementH ofH BH appearsH asH secondHmemberHofHsomeHpair.
e. ItHisHaHfunction.H ItHisHnotHone-to-
oneHbecauseHthereHareHtwoHpairsHwithHsecondHmemberH6.H ItHisHnotHontoHBHbecauseHthereHisHnoHpai
rHwithHsecondHmemberH2.
f. ItHisH notH aH functionH becauseH thereH areH twoH pairsH withH firstH memberH 2.

13. DrawH theH lineH throughH PH andH x,H andH letH yH beH itsH pointH ofH intersectionH withH theH lineH segmentH CD.

14. a.H φH:H[0,H1]H→H [0,H2]H whereH φ(x)H=H2x b.H φH:H[1,H3]H →H [5,H25]H whereH φ(x)H=H5H+H10(xH−H1)
c.H φH:H[a,Hb]→ [c,Hd]H whereH φ(x)H=HcH+H H(x− a)
d−c
b−a

15. LetH φH:HSH →HRH beH definedH byH φ(x)H=Htan(π(xH−H2 1H)).

16. a.H ∅;H cardinalityH 1 b.H ∅,H{a};H cardinalityH 2 c.H ∅,H{a},H{b},H{a,Hb};H cardinalityH 4
d.H ∅,H{a},H{b},H{c},H{a,Hb},H{a,Hc},H{b,Hc},H{a,Hb,Hc};H cardinalityH 8

17. Conjecture: |P(A)|H=H2sH =H2|A|.
ProofHTheHnumberHofHsubsetsHofHaHsetHAHdependsHonlyHonHtheHcardinalityHofHA,HnotHonHwhatHtheH
elementsHofH AH actuallyH are.H SupposeHBH=H{1,H2,H3,H·H·H·H,HsH−H1}H andH AH=H{1,H2,H3,H H ,Hs}.H ThenH AH ha
sH all
theHelementsHofHBHplusHtheHoneHadditionalHelementHs.H AllHsubsetsHofHBHareHalsoHsubsetsHofHA;Hthes
eHareHpreciselyHtheHsubsetsHofHAHthatHdoHnotHcontainHs,HsoHtheHnumberHofHsubsetsHofHAHnotHcontai
ningHsHisH|P(B)|.H AnyHotherHsubsetHofHAHmustHcontainHs,HandHremovalHofHtheHsHwouldHproduceHaHsu
20,05 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
CreativeWrites stuvia
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
18
Miembro desde
5 meses
Número de seguidores
2
Documentos
3248
Última venta
5 días hace
A+ c0mplete newest solution Found in CREATIVE WRITES

Welcome to CREATIVEWRITES , your go-to source for high-quality test banks and study materials designed to help you excel academically. We offer a comprehensive range of resources including test banks, study guides, solution manuals, and other study materials, all meticulously curated to ensure accuracy and effectiveness. Our affordable, instantly accessible materials are complemented by excellent customer support, making your learning experience seamless and efficient. TrusT CREATIVE WRITES to be your partner in academic success, providing the tools you need to achieve your educational goals.

Lee mas Leer menos
3,2

5 reseñas

5
2
4
0
3
1
2
1
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes