100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting Applied Data Science and Visualization ()

Puntuación
5,0
(1)
Vendido
7
Páginas
42
Subido en
13-01-2021
Escrito en
2020/2021

Samenvatting Applied Data Science and Visualization (), course ended with a 8,7 with the help of this summary. Let me know your grade!

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
13 de enero de 2021
Número de páginas
42
Escrito en
2020/2021
Tipo
Resumen

Temas

Vista previa del contenido

Applied Data Science and Visualization 2020
Summary by Lode Notermans

Lecture 1
Different kinds of data analysis
Explorative data analysis (EDA)
Unsupervised learning
Supervised learning
Trade-off between prediction accuracy and model interpretability
Measuring the quality of fit
Bias Variance trade-off

Lecture 2
Grammar of graphics
Colors are perceived relatively

Lecture 3
Cross validation
Leave-one-out cross-validation (LOOCV)
k-fold Cross validation
Somewhat higher bias than LOOCV due to smaller training set for each iteration
(but smaller bias than Validation-set method due to larger training set than VS.)
Bias-Variance Trade-Off for k-Fold Cross-Validation
Using CV for classification problems

Lecture 4
Model Selection and Regularization
Subset selection
Forward stepwise selection
Backward stepwise selection
Penalized (regularized) regression
Ridge regression
Lasso regression
Lasso versus ridge regression, which method is better?
Selecting the best λ

Lecture 5
k-Nearest neighbors
Logistic regression
Interpretation of logistic regression
Evaluation of classifiers
Confusion matrix
ROC curve

,Lecture 6
Polynomial regression
Step functions
Splines
Natural splines
Choosing K (number of knots) and placement
Smoothing splines
Local regression
Multiple predictors: Generalized additive models
Conclusions

Lecture 7
What is a Shiny app?
Building basic UI
Reactivity
Final remarks on shiny

Lecture 8

Lecture 9

,Lecture 1
ISLR Chapter 1, 2

Different kinds of data analysis

Exploratory Confirmatory

Description EDA, One-sample t-test
Unsupervised learning

Prediction Supervised learning Macroeconomics

Explanation John Snow and the cholera Causal modeling
outbreak

Prescription Personalized medicine A/B testing

Exploratory data analysis (EDA)

Describing interesting patterns: use graphs,
summaries, to understand subgroups, detect
anomalies (“outliers”), understand the data


Examples: boxplot, five-number summary,
histograms, scatterplots…




Unsupervised learning

Inputs, but no outputs. Try to learn
structure and relationships from
these data, like detecting
unobserved groups (clusters) from
the data.




Assumptions about structural properties of the data
Dimension reduction methods

, ● Principal components analysis
● Factor analysis
● Random projections
Clustering
● K-means clustering


Supervised learning

Building a statistical model for predicting /
estimating an output based on one or more
inputs.




Most widely used machine-learning methods
are supervised
● Spam classifiers of e-mail
● Face recognizers over images
● Medical diagnosis systems for patients
Methods include
● (logistic) Regression
● Decision trees/random forests
● Support vector machines
● Neural networks


Classification Regression

Classification: predict to which category an Regression: predict a quantitative outcome
observation belongs (qualitative outcomes)




Trade-off between prediction accuracy and model interpretability
If the researcher is mainly interested in inference, a
more restrictive model is more useful, but when the
researcher is interested in prediction a more loose
model is more useful. While one might argue that a
more flexible model is always better, flexible models
lead to such complicated estimates of f that it is
difficult to understand how any individual predictor is
associated with the response. So a trade-off between
flexibility and interpretability has to be found. Because
5,19 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
notermanslode
5,0
(1)

Reseñas de compradores verificados

Se muestran los comentarios
6 meses hace

5,0

1 reseñas

5
1
4
0
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
notermanslode Universiteit Utrecht
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
8
Miembro desde
4 año
Número de seguidores
7
Documentos
2
Última venta
7 meses hace

5,0

1 reseñas

5
1
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes