100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

MATH 255 - Probability and Statistics Solutions to Midterm Exam I

Puntuación
-
Vendido
-
Páginas
5
Grado
A+
Subido en
25-09-2025
Escrito en
2025/2026

MATH 255 - Probability and Statistics Solutions to Midterm Exam I Problem 1. [6pt] Suppose A, B, and C are events for a probability experiment such that A and B are mutually independent, P(A) = P(B) = P(C) = 0.5, P(A ∩ C) = P(B ∩ C) = 0.3, and P(A ∩ B ∩ C) = 0.1. Fill in the probabilities of all events in the Karnaugh map below. Show your work. Due to mutual independence, we have P(A ∩ B) = 0.25. P(A ∩ B ∩ C) = 0.1 P(Ac ∩ B ∩ C) = 0.2 (+0.5 pt) P(A ∩ Bc ∩ C) = 0.2 (+0.5 pt) P(Ac ∩ Bc ∩ C) = 0 (+1 pt) P(A ∩ B ∩ C c ) = 0.15 (+1 pt) P(Ac ∩ B ∩ C c ) = 0.05 (+0.5 pt) P(A ∩ Bc ∩ C c ) = 0.05 (+0.5 pt) P(Ac ∩ Bc ∩ C c ) = 0.25 (+2 pt) 1 This study source was downloaded by from CourseH on :26:12 GMT -05:00 Problem 2. [8pt] For a given graph, two vertices, i and j, are selected at random, with all possible values of (i, j) having equal probability, including the cases with i = j. Let D denote the distance between i and j, which is the minimum number of edges that must be crossed to walk in the graph from i to j. If i = j, then D = 0. Find and sketch the PMF of D, and find its expected value and variance for each of the three undirected graphs below. There is no designated space for the final answer. Hint: For (

Mostrar más Leer menos
Institución
Revision
Grado
Revision









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Revision
Grado
Revision

Información del documento

Subido en
25 de septiembre de 2025
Número de páginas
5
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Bilkent University Fall 2022


MATH 255 - Probability and Statistics

Solutions to Midterm Exam I


Problem 1. [6pt] Suppose A, B, and C are events for a probability experiment such that A and
B are mutually independent, P (A) = P (B) = P (C) = 0.5, P (A ∩ C) = P (B ∩ C) = 0.3, and
P (A ∩ B ∩ C) = 0.1. Fill in the probabilities of all events in the Karnaugh map below. Show
your work.
Due to mutual independence, we have P (A ∩ B) = 0.25.




P (A ∩ B ∩ C) = 0.1
P (Ac ∩ B ∩ C) = 0.2 (+0.5 pt)
P (A ∩ B c ∩ C) = 0.2 (+0.5 pt)
P (Ac ∩ B c ∩ C) = 0 (+1 pt)
P (A ∩ B ∩ C c ) = 0.15 (+1 pt)
P (Ac ∩ B ∩ C c ) = 0.05 (+0.5 pt)
P (A ∩ B c ∩ C c ) = 0.05 (+0.5 pt)
P (Ac ∩ B c ∩ C c ) = 0.25 (+2 pt)




1 09-25-2025 13:26:12 GMT -05:00
This study source was downloaded by 100000899606396 from CourseHero.com on


https://www.coursehero.com/file/243107133/2022Fall-Midterm1Solutionspdf/

, Problem 2. [8pt] For a given graph, two vertices, i and j, are selected at random, with all
possible values of (i, j) having equal probability, including the cases with i = j. Let D denote
the distance between i and j, which is the minimum number of edges that must be crossed
to walk in the graph from i to j. If i = j, then D = 0. Find and sketch the PMF of D, and
find its expected value and variance for each of the three undirected graphs below. There is no
designated space for the final answer. Hint: For (b) and (c), by symmetry, it can be assumed that i = 1
and only j is selected at random.




(a) The PMF can be sketched as (+2 pt)


6 10 8 6 4 2
E[D] = ×0+ ×1+ ×2+ ×3+ ×4+ ×5
36 36 36 36 36 36
10 + 16 + 18 + 16 + 10 70 35
= = = (+0.5pt)
36 36 18

To compute the variance, we can use the second definition by computing

6 10 8 6 4 2
E[D2 ] = × 02 + × 12 + × 22 + × 32 + × 42 + × 52
36 36 36 36 36 36
10 + 32 + 54 + 64 + 50 210 105 35
= = = = .
36 36 18 6
Hence, we obtain
 2
105 35 105 × 18 − 35 × 35 1890 − 1225 665
var(D) = − = 2
= = (+1pt).
18 18 18 324 324

(b) The PMF can be sketched as (+1 pt)


Based on the center of gravity interpretation, the expected value is
3
given by (+0.5 pt).
2
Note that the expected value is well-defined since the random variable
takes finitely many values.




2 09-25-2025 13:26:12 GMT -05:00
This study source was downloaded by 100000899606396 from CourseHero.com on


https://www.coursehero.com/file/243107133/2022Fall-Midterm1Solutionspdf/
7,02 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Abbyy01 Exam Questions
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
91
Miembro desde
3 año
Número de seguidores
33
Documentos
1121
Última venta
4 semanas hace

3,5

13 reseñas

5
5
4
2
3
3
2
1
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes