100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Math255 Probability and Statistics Midterm 1 Solutions

Puntuación
-
Vendido
-
Páginas
4
Grado
A+
Subido en
25-09-2025
Escrito en
2025/2026

Bilkent University Fall Math255 Probability and Statistics Midterm 1 Solutions Problem 1. [6 pts] There are three coins each with possible outcomes heads (H) and tails (T). Coin 1 is a fair coin with equally likely outcomes. Coins 2 and 3 are bent coins, having probability of heads 5/6 and 1/6, respectively. Two of the three coins are picked at random and each flipped once. Let A be the event that coin 1 is one of the two coins picked. Let B be the event that the outcomes on the flipped coins are the same (both heads or both tails). (a) (3 pts) Compute P(B). (b) (3 pts) Compute P(A|B). Your solution should show your sample space Ω and identify the events A and B as subsets of Ω. (a) First, let us set up the probability model. We select the sample space as Ω = {(1, 2, H, H),(1, 2, H, T),(1, 2, T, H),(1, 2, T, T),(1, 3, H, H),(1, 3, H, T),(1, 3, T, H), (1, 3, T, T),(2, 3, H, H),(2, 3, H, T),(2, 3, T, H),(2, 3, T, T)} where an outcome (i, j, k, `) ∈ Ω corresponds to choosing coins i and j, obtaining k ∈ {H, T} on coin i, and ` ∈ {H, T} on coin j. The events A and B as subsets of Ω are given by A = {(1, 2, H, H),(1, 2, H, T),(1, 2, T, H),(1, 2, T, T),(1, 3, H, H),(1, 3, H, T), (1, 3, T, H),(1, 3, T, T)} B = {(1, 2, H, H),(1, 2, T, T),(1, 3, H, H),(1, 3, T, T),(2, 3, H, H),(2, 3, T, T)}. Let C12 = {(1, 2, H, H),(1, 2, H, T),(1, 2, T, H),(1, 2, T, T)} denote the event that the chosen coins are coins 1 and 2. Define C13 and C23 similarly. Since each pair of coins is equally likely to be selected, we have P(C12 = P13 = P(C23) = 1/3. Furthermore, the sets C12, C13, C23 form a partition of Ω. So, by the law of total probability, we have P(B) = P(B|C12)P(C12) + P(B|C13)P(C13) + P(B|C23)P(C23) = 1 3  P(B|C12) + P(B|C13) + P(B|C23)  . We have P(B|C12) = P {(1, 2, H, H),(1, 2, T, T)} C12 = 1 2 · 5 6 + 1 2 · 1 6 = 1 2 P(B|C13) = P {(1, 3, H, H),(1, 3, T, T)} C13 = 1 3 · 1 6 + 1 2 · 5 6 = 1 2 P(B|C23) = P {(2, 3, H, H),(2, 3, T, T)} C23 = 5 6 · 1 6 + 1 6 · 5 6 = 10 36 = 5 18 Putting these together, P(B) = 1 3  1 2 + 1 2 + 5 18 = 23 54 . This study source was downloaded by from CourseH on

Mostrar más Leer menos
Institución
Revision
Grado
Revision








Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Revision
Grado
Revision

Información del documento

Subido en
25 de septiembre de 2025
Número de páginas
4
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

İ.D. Bilkent University Fall 2021-2022
Math255 Probability and Statistics
Midterm 1 Solutions

Problem 1. [6 pts] There are three coins each with possible outcomes heads (H) and
tails (T). Coin 1 is a fair coin with equally likely outcomes. Coins 2 and 3 are bent coins,
having probability of heads 5/6 and 1/6, respectively. Two of the three coins are picked
at random and each flipped once. Let A be the event that coin 1 is one of the two coins
picked. Let B be the event that the outcomes on the flipped coins are the same (both
heads or both tails).

(a) (3 pts) Compute P (B).
(b) (3 pts) Compute P (A|B).

Your solution should show your sample space Ω and identify the events A and B as subsets
of Ω.

(a) First, let us set up the probability model. We select the sample space as

Ω = {(1, 2, H, H), (1, 2, H, T ), (1, 2, T, H), (1, 2, T, T ), (1, 3, H, H), (1, 3, H, T ), (1, 3, T, H),
(1, 3, T, T ), (2, 3, H, H), (2, 3, H, T ), (2, 3, T, H), (2, 3, T, T )}

where an outcome (i, j, k, `) ∈ Ω corresponds to choosing coins i and j, obtaining k ∈
{H, T } on coin i, and ` ∈ {H, T } on coin j. The events A and B as subsets of Ω are given
by

A = {(1, 2, H, H), (1, 2, H, T ), (1, 2, T, H), (1, 2, T, T ), (1, 3, H, H), (1, 3, H, T ),
(1, 3, T, H), (1, 3, T, T )}

B = {(1, 2, H, H), (1, 2, T, T ), (1, 3, H, H), (1, 3, T, T ), (2, 3, H, H), (2, 3, T, T )}.

Let C12 = {(1, 2, H, H), (1, 2, H, T ), (1, 2, T, H), (1, 2, T, T )} denote the event that the cho-
sen coins are coins 1 and 2. Define C13 and C23 similarly. Since each pair of coins is
equally likely to be selected, we have P (C12 = P13 = P (C23 ) = 1/3. Furthermore, the sets
C12 , C13 , C23 form a partition of Ω. So, by the law of total probability, we have

P (B) = P (B|C12 )P (C12 ) + P (B|C13 )P (C13 ) + P (B|C23 )P (C23 )
 
1
= P (B|C12 ) + P (B|C13 ) + P (B|C23 ) .
3
We have
 1 5 1 1 1
P (B|C12 ) = P {(1, 2, H, H), (1, 2, T, T )} C12 = · + · =
2 6 2 6 2
 1 1 1 5 1
P (B|C13 ) = P {(1, 3, H, H), (1, 3, T, T )} C13 = · + · =
3 6 2 6 2
 5 1 1 5 10 5
P (B|C23 ) = P {(2, 3, H, H), (2, 3, T, T )} C23 = · + · = =
6 6 6 6 36 18
Putting these together,
 
1 1 1 5 23
P (B) = + + = .
3 2 2 18 54



This study source was downloaded by 100000899606396 from CourseHero.com on 09-25-2025 13:47:22 GMT -05:00


https://www.coursehero.com/file/133311159/Midterm-1-2021-22-Fall-Solutionspdf/
7,01 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Abbyy01 Exam Questions
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
91
Miembro desde
3 año
Número de seguidores
33
Documentos
1121
Última venta
4 semanas hace

3,5

13 reseñas

5
5
4
2
3
3
2
1
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes