100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solutions Manual – Abstract Algebra: A First Course (2nd Edition) by Stephen Lovett | ISBN 9781032289410 | Complete Answers

Puntuación
-
Vendido
-
Páginas
467
Grado
A+
Subido en
31-08-2025
Escrito en
2025/2026

This document contains the complete Solutions Manual for Abstract Algebra: A First Course (2nd Edition) by Stephen Lovett (ISBN 9781032289410). It provides fully worked-out answers and step-by-step solutions for all exercises across the chapters of the textbook. Ideal for students who want to check their work, deepen their understanding of proofs, and practice problem-solving techniques in abstract algebra. Covers core topics such as groups, rings, fields, and homomorphisms with clear and detailed explanations.

Mostrar más Leer menos
Institución
Abstract Algebra
Grado
Abstract Algebra











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Abstract Algebra
Grado
Abstract Algebra

Información del documento

Subido en
31 de agosto de 2025
Número de páginas
467
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

SOLUTIONS MANUAL
ABSTRACT ALGEBRA, A FIRST COURSE
2ND EDITION
CHAPTER NO. 01: GROUPS
Hints and Corrections
ˆ Exercise 1.7.14 is simply wrong.

1.1 – Symmetries of a Regular Polygon
Exercise: 1 Section 1.1
Question: Use diagrams to describe all the dihedral symmetries of the equilateral triangle.
Solution: The equilateral triangle has 6 dihedral symmetries.




identity rotation 120◦ rotation 240◦




reflection through x-axis reflection reflection

Exercise: 2 Section 1.1
Question: Write down the composition table for D4 .
Solution: Composition table for D4 where the entries give a ◦ b.
a\b 1 r r2 r3 s sr sr2 sr3
1 1 r r2 r3 s sr sr2 sr3
r r r2 r3 1 sr3 s sr sr2
r2 r2 r3 1 r sr2 sr3 s sr
r3 r3 1 r r2 sr sr2 sr3 s (1.1)
s s sr sr2 sr3 1 r r2 r3
sr sr sr2 sr3 s r3 1 r r2
sr2 sr2 sr3 s sr r2 r3 1 r
sr3 sr3 s sr sr2 r r2 r3 1



Exercise: 3 Section 1.1
Question: Determine what r3 sr4 sr corresponds to in dihedral symmetry of D8 .
Solution: In dihedral symmetry of D8 , we have the following algebraic identities on r and s:

r8 = 1, s2 = 1, rk s = sr−k .

So for our element, progressively change it to put all the s terms to the left:

r3sr4sr = r3s(r4s)r = r3s2r−4r = r31r−3 = 1.

,Exercise: 4 Section 1.1
Question: Determine what sr6 sr5 srs corresponds to as a dihedral symmetry of D9 .
Solution: Recall from Corollary 3.5 that srk = rn−k s where in our case n = 9. So,

sr6 sr5 srs = sr6 sr5 ssr8
= ssr3 r5 (1)r8
= (1)r8 r8
= r9 r7
= 1r7
= r7 .



Exercise: 5 Section 1.1
Question: Let n be an even integer with n ≥ 4. Prove that in Dn , the element rn/2 satisfies rn/2 w = wrn/2
for all w ∈ Dn .
Solution: From the paragraph above Proposition 3.1.4 we can write w ∈ Dn as w = sa rb where a is either 0
or 1. Consider rn/2 sa rb . We have two cases.
Case 1: a = 0 So we have rn/2 rb = rn/2+b = rb+n/2 = rb rn/2 .
Case 2: a = 1 Now, rn/2 srb = srn−n/2 rb = srn/2 rb = srn/2+b = srb+n/2 = srb rn/2 .
In both cases, we see that rn/2 w = wrn/2 .

Exercise: 6 Section 1.1
Question: Let n be an arbitrary integer n ≥ 3. Show that an expression of the form

ra sb rc sd · · ·

is a rotation if and only if the sum of the powers on s is even.
Solution: For any numbers l and m we have rl sm = sm rl−m . So we can move all powers of s around without
changing the exponent’s value. Since we can rewrite any element as sj rk , we have ra sb rc sd · · · = sb+d+··· rm for
some m. Now, if b+d+· · · is an even number then sb+d+··· rm = s2 s2 · · · s2 rm = (1)(1) · · · (1)rm = 1rm = rm and
our element is a rotation. If b+d+· · · is an odd number then sb+d+··· rm = s1 s2 · · · s2 rm = s(1)(1) · · · (1)rm = srm
and our elements is not a rotation.

Exercise: 7 Section 1.1
Question: Use linear algebra to prove that

Rα ◦ Fβ = Fα/2+β , Fα ◦ Rβ = Fα−β/2 , and Fα ◦ Fβ = R2(α−β) .


Solution: As linear transformations on R2 → R2 , the matrices of the rotation Rα and of the reflection Fβ with
respect to the standard basis are respectively
   
cos α − sin α cos 2β sin 2β
and .
sin α cos α sin 2β − cos 2β

The matrix for Rα ◦ Fβ is
    
cos α − sin α cos 2β sin 2β cos α cos 2β − sin α sin 2β cos α sin 2β + sin α cos 2β
=
sin α cos α sin 2β − cos 2β sin α cos 2β + cos α sin 2β sin α sin 2β − cos α cos 2β
 
cos(α + 2β) sin(α + 2β)
= .
sin(α + 2β) − cos(α + 2β)

,This matrix corresponds to the reflection Fα/2+β .
The matrix for Fα ◦ Rβ is
    
cos 2α sin 2α cos β − sin β cos 2α cos β + sin 2α sin β − cos 2α sin β + sin 2α cos β
=
sin 2α − cos 2α sin β cos β sin 2α cos β − cos 2α sin β − sin 2α sin β − cos 2α cos β
 
cos(2α − β) sin(2α − β)
=
sin(2α − β) − cos(2α − β)
This matrix corresponds to the reflection Fα−β/2 .
The matrix for Fα ◦ Fβ is
    
cos 2α sin 2α cos 2β sin 2β cos 2α cos 2β + sin 2α sin 2β cos 2α sin 2β − sin 2α cos 2β
=
sin 2α − cos 2α sin 2β − cos 2β sin 2α cos 2β − cos 2α sin 2β sin 2α sin 2β + cos 2α cos 2β
 
cos(2α − 2β) − sin(2α − 2β)
=
sin(2α − 2β) cos(2α − 2β)
This matrix corresponds to the reflection R2(α−β) .

Exercise: 8 Section 1.1
Question: Describe the symmetries of an ellipse with unequal half-axes.
Solution: The ellipse with unequal half-axes has 4 symmetries. Supposing that the axes of the ellipse are
on the x and y axes, then the ellipse has for symmetries: the identity, reflection through the x axis, reflection
through the y axis, and rotation by 180◦ , which is the composition of the two reflections.

Exercise: 9 Section 1.1
Question: Determine the set of symmetries for each of the following shapes (ignoring shading):




(a) (c)
(b)




(d) (f)
(e)




Solution:
a) This shape has square rotational symmetry.
b) This shape has triangular dihedral symmetry, D3 .
c) This flower shape has dodecahedral dihedral symmetry, D12 .
d) This shape has octagonal rotational symmetry.
e) This shape has pentagonal dihedral symmetry, D5 .
f) This shape has 180◦ degree rotational symmetry.

Exercise: 10 Section 1.1
Question: Sketch a pattern/shape (possibly a commonly known logo) that has D8 symmetry but does not
have Dn symmetry for n > 8.
Solution: Here is an example of D8 symmetry:

, Exercise: 11 Section 1.1
Question: Sketch a pattern/shape (possibly a commonly known logo) that has rotational symmetry of angle
π
2 but does not have full D4 symmetry.
Solution: The logo for Chase Bank has the desired symmetry.




Exercise: 12 Section 1.1
Question: Consider a regular tetrahedron. We call a rigid motion of the tetrahedron any rotation or composi-
tion of rotations in R3 that map a regular tetrahedron back into itself, though possibly changing specific vertices,
edges, and faces. Rigid motions of solids do not include reflections through a plane.
a) Prove that there are exactly 12 rigid motions of the tetrahedron. Call this set R.
b) Using a labeling of the tetrahedron, explicitly list all rigid motions of the tetrahedron.
c) Explain why function composition ◦ is a binary operation on R.
Solution:
a) Every rigid motion of a tetrahedron will take a vertex and map it into another vertex. There are 4
possibilities for correspondences. Furthermore, for every function that maps a vertex A to a vertex B, there
are three ways to rotate the tetrahedron around the axis OB, where O is the center of the tetrahedron.
Hence, in total there are 4 × 3 = 12 possible rigid motions of a tetrahedron.
b) Let us label the vertices of the tetrahedron as 1, 2, 3, 4. The rigid motions of the tetrahedron are described
by functions f : {1, 2, 3, 4} → {1, 2, 3, 4}. In fact, these functions will be bijections. We can encode such
functions as 3241 to mean that f (1) = 3, f (2) = 2, f (3) = 4, and f (4) = 1. In this manner of encoding
the rigid motions, a complete list is
R ={1234, 1342, 1423, 3241, 4213, 2431, 4132, 2314, 3124, 2143, 3412, 4321}.

c) The definition of a rigid motion allows for a composition of two rigid motions to again be a rigid motion.
Any face will be mapped to any other face the through composition of to rigid motions.

Exercise: 13 Section 1.1
Question: Consider the diagram S ′ below. Sketch the diagram S that has S ′ as a fundamental region with a)
D4 symmetry; b) only rotational square symmetry. [Assume reflection through the x-axis is one of the reflections.]




S′
21,84 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
docusity Nyc Uni
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1208
Miembro desde
2 año
Número de seguidores
132
Documentos
1312
Última venta
1 día hace

4,5

188 reseñas

5
134
4
29
3
16
2
1
1
8

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes