100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

DATA MINING MIDTERM EXAM QUESTIONS AND ANSWERS

Puntuación
-
Vendido
-
Páginas
6
Grado
A+
Subido en
27-07-2025
Escrito en
2024/2025

DATA MINING MIDTERM EXAM QUESTIONS AND ANSWERS Concept Hierarchy - Answer-Used for multiple levels of abstraction Non-parametric methods of numerosity data reduction techniques - Answer-Histograms Clustering A Data warehouse differs from an operational database because most data warehouses have a product orientation and tuned to handle transactions that update the database - Answer-False Human inspection is an important an appropriate method to handle noisy data - Answer-False OLTP captures, stores, and processes data from transactions in real time, while OLAP uses complex queries to analyze aggregated historical data - Answer-True Multiple warehouses are needed in a database-centric solution. However, integration the warehouse is a problem - Answer-True If you want to handle noisy data, you can use regression - Answer-True Normalization its used to do data transformation - Answer-True Feature selection is a dimensionality reduction technique - Answer-True It is not necessary to have a target variable for applying dimensionality reduction in data reduction - Answer-True Discretization and Concept Hierarchy Generations divides the range of continuous attributes into intervals - Answer-True Distributive functions - Answer-count() max() sum() Algebraic functions - Answer-avg() min_N() Holistic functions - Answer-mode() rank() median() Data cube is generally used for easily smoothing data - Answer-False

Mostrar más Leer menos
Institución
DATA MINING
Grado
DATA MINING









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
DATA MINING
Grado
DATA MINING

Información del documento

Subido en
27 de julio de 2025
Número de páginas
6
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

DATA MINING MIDTERM EXAM
QUESTIONS AND ANSWERS
Concept Hierarchy - Answer-Used for multiple levels of abstraction

Non-parametric methods of numerosity data reduction techniques - Answer-
Histograms
Clustering

A Data warehouse differs from an operational database because most data
warehouses have a product orientation and tuned to handle transactions that update
the database - Answer-False

Human inspection is an important an appropriate method to handle noisy data -
Answer-False

OLTP captures, stores, and processes data from transactions in real time, while
OLAP uses complex queries to analyze aggregated historical data - Answer-True

Multiple warehouses are needed in a database-centric solution. However, integration
the warehouse is a problem - Answer-True

If you want to handle noisy data, you can use regression - Answer-True

Normalization its used to do data transformation - Answer-True

Feature selection is a dimensionality reduction technique - Answer-True

It is not necessary to have a target variable for applying dimensionality reduction in
data reduction - Answer-True

Discretization and Concept Hierarchy Generations divides the range of continuous
attributes into intervals - Answer-True

Distributive functions - Answer-count()
max()
sum()

Algebraic functions - Answer-avg()
min_N()

Holistic functions - Answer-mode()
rank()
median()

Data cube is generally used for easily smoothing data - Answer-False

, A concept hierarchy climbing defines a sequence of concept mappings from a set of
low-level concepts of higher-level, more general concepts - Answer-True

What are normalization methods? - Answer-Min-max
Z-score
Decimal scaling

Min-max normalization - Answer-A normalization technique in which values are
shifted and rescaled so that they end up ranging between 0 and 1

Equal width and frequency of data are used in... - Answer-Binning

Generalization - Answer-

Examples of supervised learning - Answer-Credit/loan approval
Fraud detection

What is the objective of unsupervised learning? - Answer-Determine data patterns
Determine data groupings

Examples of supervised learning algorithms - Answer-Neural network
Support vector machines

Reinforcement learning - Answer-Has a rewarding strategy

ID3 algorithm can also be used in clustering - Answer-False

Two main processes in classification algorithms - Answer-Model construction
Model usage

An attribute used in DT can have both discrete and continuous values - Answer-True

DT Tree construction - Answer-The terminal told hold s class label
An internal node in a DT implies a test or attribute

k-NN algorithm does more computation on test time rather than train time - Answer-
Yes

For discriminative classifiers, what makes the difference between discriminative and
non-discriminative data? - Answer-P(Y)

Regarding the Bayesian Network as shown in the diagram, what do the nodes and
links in the Bayesian Network Classifier imply? - Answer-Random variables and their
dependencies

Market basket analysis - Answer-Support is the general measure of association
between the two item sets
Association rule is suitable fo r marketing and sales promotion
12,68 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Freshy Oxford University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
52
Miembro desde
1 año
Número de seguidores
4
Documentos
6784
Última venta
1 día hace

3,6

10 reseñas

5
3
4
4
3
1
2
0
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes