100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

DATA MINING EXAM Q&A

Puntuación
-
Vendido
-
Páginas
11
Subido en
26-03-2025
Escrito en
2024/2025

DATA MINING EXAM Q&A

Institución
DATA MINING
Grado
DATA MINING









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
DATA MINING
Grado
DATA MINING

Información del documento

Subido en
26 de marzo de 2025
Número de páginas
11
Escrito en
2024/2025
Tipo
Examen
Contiene
Desconocido

Temas

Vista previa del contenido

DATA MINING EXAM Q&A
User-based collaborative filtering - Answer-1) Starts with user
2) Finds users who have purchased a similar set of items or ranked items in a similar
fashion
3) Makes recommendation to the initial user based on what the similar users
purchase or like

Item-based collaborative filtering - Answer-1) Starts with an item being considered by
a user
2) locates other items that tend to be co-purchased with that first item

Ratings Matrix - Answer-x=ratings
y=items

Most of the time will be mostly empty because it requires inputs by the customer
Out of 100 items a customer may only rate 10

Process of building a ratings matrix - Answer-1) Assemble known ratings
2) Predict unknown ratings
3) Prediction evaluation

What is the objective of a recommendation engine? - Answer-To fill blank cells of the
ratings matrix with predicted ratings for each user and the item, which the user
presumably hasn't experienced yet.

What is Collaborative filtering based on? - Answer-The idea that a user will prefer an
item if it is recommended by their like-minded friends

Distinguishing feature of Collaborative filtering - Answer-The algorithm considers
only the ratings matrix -- the past user-item interactions

It is general - so works for all categories as long as it's based on ratings

Approaches for Collaborative filtering - Answer-1) Neighborhood method
-K-Nearest Neighbor classification

2) Latent factor method - explains the ratings through a set of dimensions called
latent factors
-Matrix factorization

Matrix factorization - Answer-A latent factor method

Both users and items are mapped to a common set of self-extracted factors

Can you do training and scoring separately with recommendations? - Answer-No.

What is a difficult part of recommendation? - Answer-User-level preference is very
sensitive (personal and private)

, Users implicitly trust companies to safeguard data by agreeing to terms and
conditions

Clustering - Answer-Process of finding meaningful grouping in a dataset.

Group individuals by similarity

Is clustering about predicting a target class variable? - Answer-No, it's meant to
simply capture the possible natural groupings in data.

Why is clustering useful? - Answer-It can be used to explore if natural groups exists.

Answer questions about groups or what to offer.

Classification vs. Clustering - Answer-Classification - Supervised learning. Does data
belong to known group?

Clustering - Unsupervised learning. Process of dividing

Applications of Clustering - Answer-1) Marketing - discover groups of customers
2) Land use - identify similar land
3) Insurance - identify policy holder class

How are association rules and basket analysis used? - Answer-As an exploratory
tool to mine a limited number of common rules that can then be analyzed by a
human.

Can be used for building recommendations.

What is the goal of Association Rules? - Answer--Identify co-occurring item sets in
transaction-type databases.
-"What goes with what?"

What are the stages of Association rules? - Answer-1) Generate a list of meaningful
rules
2) Filter the list of rules based on interest criteria

What are popular rule generating algorithms for generating Association rules? -
Answer-1) Apriori
2) FP-Growth

Pivoted data - Answer-From a list of sessions and combinations of categories from
each particular session, the data can be transformed into something like a binary
form for processing

Association Rule terminology - Answer-If "item A" then "item B"
antecedent (premise) --> Consequent (conclusion)

{item A} --> {item B}
14,42 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
biggdreamer Havard School
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
248
Miembro desde
2 año
Número de seguidores
68
Documentos
17956
Última venta
6 días hace

4,0

38 reseñas

5
22
4
4
3
6
2
2
1
4

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes