100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Class notes Lecture 4 Statistics 2/Statistiek 2 (P_BSTATIS_2)

Puntuación
-
Vendido
-
Páginas
6
Subido en
09-02-2025
Escrito en
2023/2024

This document provides a detailed breakdown of partial effects in multiple regression, focusing on: 1. Understanding Partial Effects in Multiple Regression ️ Why b-coefficients alone can’t determine effect strength ️ Standardized Regression Coefficients (b)* ️ Squared Partial Correlation (R²_partial) & Its Interpretation ️ R-Squared Change (ΔR²) for Unique Predictor Contribution 2. Hypothesis Testing for Individual Predictors ️ t-Tests for b-Coefficients (Significance Testing) ️ Confidence Intervals for Regression Coefficients ️ F-Tests for Model Comparison (Complete vs. Reduced Models) ️ How to Determine if Adding a Predictor Improves the Model 3. Practical Examples & Interpretation Real-world case study on class size, academic performance, and socio-economic status (SES) Step-by-step calculations for R² changes, significance testing, and model comparisons

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
9 de febrero de 2025
Número de páginas
6
Escrito en
2023/2024
Tipo
Notas de lectura
Profesor(es)
Dr. dr. debby ten hove
Contiene
Todas las clases

Temas

Vista previa del contenido

Partial Effects in Multiple regression


Learning Objectives:
● Compute and interpret effect sizes for single predictors in the multiple regression model
● Test an hypothesis about single (or sets of) predictors in the multiple regression model
● Draw a conclusion about hypotheses for single (or sets) of parameters in the multiple
regression model


Eg Is class size associated with academic performance among schools with a similar percentage
of students receiving free meals?
→ controlling for percentage of free meals (moderator relationship)

(1) Multiple Regression

1.1 Effect Sizes in Multiple Regression

We cannot use b to judge the strength of the partial association between x and y as b depends on the
scale on which x and y were measured
Eg if one predictor is measured in metres and another predictor is measured in kilograms,
their coefficients will be on different scales
→ hence, we inspect effect size instead
1. Standardised regression coefficient: b*
2
2. Squared partial correlation: r p
3. Change in explained variation: △ R 2

1.1.1 Standardised Regression Coefficient (b*)

We can scale each of the b coefficient in the multiple regression model using the:
● SD of the respective predictor (x)
● SD of the outcome variable (y)

Hence, b* is the amount of SDs y is expected to change when x i increases with 1 SD (controlling for
all other predictors in the model)

Rule of thumb for interpretation
● 0 - .10: negligible
● .10 - .30: small
● .30 - .50: moderate
● .50 ≤ large

Eg

^
AP=9.981 −0.067 ∗ PFM +0.003 ∗CS
sx 1 9.068
For PFM: b 1∗¿ b1 ( )=−0.067( )=−0.91
sy 0.667

, 2
1.1.2 Squared Partial Correlation (r p )
Represents the proportion of variance in y not associated with any other x's that is
explained by x 1

In a model with 2 predictors, the partial correlation between x 1 and y, controlling for x 2:
r yx 1−r yx2 r x1 x2
r yx1. x 2=
√❑
Which is easier to compute when squared:
2 R 2−r x22 proportion variation∈ y uniquely explained by x 1
r yx1. x 2 = 2 →
1−r x2 proportion variation∈ y not explained by x 2

Rule of thumb to interpret:
● 0 - .01: negligible
● .01 - .06: small
● .06 - .14: moderate
● .14 ≤ large

Eg




2 2
2 R −r x2 0.845−(−0.919)2 0.004
r yx1. x 2 = = = = 0.002
1−r x2
2
1−(−0.919)
2
0.155




Interpretation: class size explains 0.2% of the differences in academic performance that were not yet
explained by the percentage of students with free meals. This is a negligible effect.

1.1.3 R-Squared Change ( △ R 2)
The difference in explained variation when comparing two models
1. Complete model with all predictors
Eg ^
y c =a+b1 x1 +b 2 x 2
2. Reduced model which includes all predictors, apart from the one for which
we want to know the partial effect
Eg ^
y r =a+b 1 x 1

R-squared change: △ R 2=Rc 2−Rr 2
3,49 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
kendt Vrije Universiteit Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
24
Miembro desde
3 año
Número de seguidores
0
Documentos
58
Última venta
1 mes hace
kentaq

Hello! I’m selling all my psychology (and more) notes and assignments from first, second, and third year. I’ve averaged an 8 throughout my studies, so I hope these notes will help you too. I also took the Emotion, Cognition & Behaviour pre-minor and a minor in Peace & Conflict Studies so I have notes for those too!

2,5

2 reseñas

5
0
4
1
3
0
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes