100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting Hoofdstuk 5 - Integratietechnieken

Puntuación
-
Vendido
-
Páginas
4
Subido en
07-04-2020
Escrito en
2019/2020

Samenvatting van tentamenstof uit hoofdstuk 5

Institución
Grado








Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
Hoofdstuk 5
Subido en
7 de abril de 2020
Número de páginas
4
Escrito en
2019/2020
Tipo
Resumen

Temas

Vista previa del contenido

Hoofdstuk 5 Integratietechnieken



De kettingregel en de substitutieregel

Bij de functie u ( x )=f ( g ( x ) ) gebruiken we de kettingregel om de afgeleide te vinden, dit geeft
' '
u' ( x ) =f ( g ( x ) ) ∙ g ( x )

Om weer terug te komen bij u ( x ), ofwel de primitieve van u' ( x ) , nemen we het integraal van u' ( x )
' '
gebruik makende van de substitutieregel∫ f ( g ( x ) ) ∙ g ( x ) dx=f ( g ( x ) )


4
Als voorbeeld nemen we het integraal 4 x3 e x (voorwaarde is dat 4 x3 de afgeleideis van x 4 is )

u ( x )=x 4 u' ( x ) =¿ 4 x3
4 4

∫ 4 x 3 e x dx =∫ u' ( x ) ∙ e u ( x ) dx=∫ e u (x ) dx=¿ eu ( x ) +C=e x +C ¿

Voor willekeurige functies f ( u ) en u=u ( x ) geldt:

∫ f ( u ( x ) ) ∙ u' ( x ) dx=∫ f ( u ) du
Als een functie niet de vorm heeft die voor substitutie nodig is dan moet het integrand met een
constante factor worden vermenigvuldigt.


TIP!
Voorbeeld
Bepaal van u(x) de afgeleide en
g ( x )=cos ( 2 x ) probeer deze terug te vinden in het
u ( x )=2 x integrand, is deze niet terug te vinden,
g ( x )=cos ( u ( x ) )  vermenigvuldig dan het integrand met
u' ( x )=2
de factor die ervoor zorgt dat het
Integrand heeft niet de vorm “u' ( x ) ∙ cos ( u ( x ) )” integrand de vorm “u' ( x ) f (u ( x ) )”
krijgt.
Immers nu staat er g ( x )=1∙ cos ( u ( x ) ) dus moet er
Compenseer door het integraal te
vermenigvuldigt worden met een constante factor, vermenigvuldigen met
maar welke?
1
Constante factor = 2/1=2 en dit geeft: constante factor

2 ∙cos ( u ( x ) ) dit kan door middel van de
substitutieregel geprimitiveerd worden (rekening houdend met compensatiefactor:
1 1 1
∫ 2∙ cos ( u ( x ) )=¿ cos ( u ( x ) ) = cos ( 2 x ) +C ¿
2 2 2
2,99 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
timodiederik
5,0
(1)

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
timodiederik Universiteit Leiden
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
22
Miembro desde
5 año
Número de seguidores
19
Documentos
28
Última venta
1 año hace

5,0

1 reseñas

5
1
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes