100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting statistiek 1 (sem 2)

Puntuación
-
Vendido
-
Páginas
37
Subido en
21-08-2024
Escrito en
2023/2024

Dit is een samenvatting van statistiek 1 van de faculteit sociale wetenschappen op de UA. Dit behandelt de leerstof van het 2de semester.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
21 de agosto de 2024
Número de páginas
37
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

Statistiek 1: semester 2
Semester 1: Beschrijvende statistiek = Het beschrijven van de gegevens van een steekproef of
populatie met behulp van tabellen, grafieken en kengetallen.

Semester 2: Inferentiële statistiek = Op basis van steekproefgegevens uitspraken doen over de
populatie.


Basisbegrippen kansberekening
 Stochastisch proces = kansexperiment = een proces waarvan de uitkomst onzeker is
<-> Deterministisch proces = een proces waarvan de uitkomst vastligt
 Toevalsgebeuren (gebeurtenis) = een specifieke (groep van) uitkomst(en) van een
stochastisch proces
 Elementair toevalsgebeuren behelst één uitkomst
 Uitkomstenruimte S = de verzameling van alle mogelijke elementaire toevalsgebeurens
 Een samengesteld toevalsgebeuren heeft betrekking op meerdere elementaire
toevalsgebeurens
 Een verzameling = een geheel van objecten, die aan bepaalde voorwaarden moeten voldoen
om tot de verzameling te behoren.
 De unie van twee verzamelingen A en B bestaat uit alle elementen die in A of B zitten (A ∪ B)




 De doorsnede van twee verzamelingen A en B bestaat uit alle elementen die in A en B zitten
(A ∩ B)




 A is een deelverzameling van B wanneer ze een deel van de elementen van B bevat (A ⊂ B)

,  Disjuncte verzamelingen zijn verzamelingen die geen gemeenschappelijke elementen
bevatten (A ∩ B = ∅)




 Het verschil van twee verzamelingen A en B is de verzameling van alle elementen van A die
niet in B zitten (A \ B)
 Elk toevalsgebeuren A (elementair of samengesteld) is een deelverzameling uit de
uitkomstenruimte S
 De elementaire toevalsgebeurens in uitkomstenruimte S zijn disjunct: ze overlappen niet
 Uitkomstenruimte S is exhaustief: het bevat alle mogelijke elementaire toevalsgebeurens
 Het complement van toevalsgebeuren A omvat alle elementaire toevalsgebeurens in de
uitkomstenruimte S die niet gelijk zijn aan A ( AC of A = S \ A)




 De machtsverzameling M(S) is de verzameling van alle mogelijke deelverzamelingen van
uitkomstenruimte S
Als #S = n  #M(S) = 2n (kardinaalgetal # = totaal aantal elementen)


Kansdefinitie
Een kans P(G) is de waarschijnlijkheid dat de gebeurtenis G zal optreden, uitgedrukt in een getal
tussen 0 en 1

P is een functie die met elke gebeurtenis G een reëel getal P(G) tussen 0 en 1 associeert

1. Subjectieve kansdefinitie (Gokkans)
Vaak gebaseerd op ervaring, vaag

, 2. Empirische kansdefinitie (Zweetkans)
fi
 geregeld berekenen (= benadering voor kans)
n
f
 kijken waar de waarden i naartoe gaan als n toeneemt  de `limietwaarde’ is de
n
gezochte kans (kans = relatieve frequentie in the long run)
fi
 P(A) = lim
n→∞ n
De wet van de grote getallen

3. Theoretische kansdefinitie van Laplace (Weetkans)
¿ A ¿ gunstige
P ( A )= =
¿ S ¿ mogelijke
Laplace veronderstelt dat elke uitkomst even plausibel is!

De reële functie P moet voldoen aan 3 axioma’s:

1. 0 ≤ P(A) ≤1
2. P(S) = 1
3. Als A en B disjuncte gebeurtenissen zijn (A ∩ B = ø), geldt dat P (A U B) = P(A) + P(B)


Rekenregels kansrekening
1. Complementregel
P( A )= 1 - P(A)
2. Somregel
A en B disjunct: P (A U B) = P(A) + P(B)
A en B niet disjuct: P(A U B)= P(A) + P(B) - P(A ∩ B)
3. Productregel
Bij onafhankelijke gebeurtenissen: P(A ∩ B)= P(A) . P(B)
A en B afhankelijk: P(A ∩ B) = P(A|B).P(B)
OF = P(B|A).P(A)

voorwaardelijke kans = ‘a posteriori’ kans

4. Regel voorwaardelijke kans
P ( A ∩B) P ( A ∩B)
P(A|B) = OF P(B|A) =
P( B) P( A)
5. Regel totale kans
Regel totale kans bij dichotome variabele B: P(A) = P(A|B) . P(B) + P(A| BC ) . P( BC )
k
Regel totale kans bij niet-dichotome variabele B: P(A) = ∑ P( A∨Bi). P(Bi)
i=1
6. Regel van Bayes
Zorgt ervoor dat de voorwaardelijke kans P(A|B) kan worden uitgerekend door de causaliteit
om te keren  Dus P(A|B) berekenen op basis van P(B|A)

, Herhaling vorig semester:
frequentieverdeling

Gemiddelde:

Variantie en standaardafwijking:




Stochast
Een stochast of kansvariabele is een variabele waarvan de waarden numerieke uitkomsten zijn van
een stochastisch proces.

Een stochast is een functie die de elementaire uitkomsten van een bepaald kansexperiment verbindt
met een numerieke waarde.

Verwachte waarde van een stochast
Het gemiddelde van een stochast wordt de verwachtingswaarde genoemd.
7,06 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
janiencleynhens

Conoce al vendedor

Seller avatar
janiencleynhens Universiteit Antwerpen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1
Miembro desde
1 año
Número de seguidores
0
Documentos
2
Última venta
5 meses hace

0,0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes