,
, MECANICA - CiNE HATiCA CASE 1
↓
DiNÁMICA
-
TRABAJO-ENERGIA
FLUIDOS , ESTADISTICA
-
DiNAMICA
BADIOACTIVIDAD
TERMODINAMICA
¿ ElECTRICIDAD ?
CINEMATICA
Parte de La fisica que estudia el movimiento .
MAGNiTUDES :
7 :
tiempo (s)
S
espacio (m)
:
v velocidad (m/s)
:
a =
aceleración (m/s")
-> ESTUDIO VECTORIAL
Recordamos :
a
a =
b +
c
b
12 send =
cat opuesto =
1
C
hipotenusa G
cost = cat
contiguo - C
-
hipotenusa a
tyd
=
cat opuesto
=
b
cat
contiguo c
·
VECTOR DE POS: CON : nos dice donde se encuentra la particula móvil en cada instante .
y - -P(x y) ,
i
- - - -
- -
I
↳
b .
r i
i x
yj
= +
0 X
S: conocemos las ecuaciones del movimiento "" e
"" podemos obtener la ewacici de la
trayectoria (camino recorridol .
-
x
fr(t) Despejo "" en una de las ecuaciones y
sustituyo en la Otra
=
.
y
=
fz(t) -
, la la posición
VECTOR DE DESPLAZAMIENTO Es el
final
·
:
aue une posición inicial con .
·*
Er
S Ar= T FE -
⑧
·
VECTOR UELOCIDAD MEDIA :
Umedia-- Art
At
·
VECTOR UECOCIDAD INSTANTANEA :
nos dirá la velocidad en cada instante .
se
dibuja en el
punto en el que se enwentre el móvil .
= vxi =
v j
.
Y a
~
--- 12 sUX
No
El vector tiene un modulo :
IrIV =
vx V· +
dirección oxl
y
una
Cángulo formado can
ty
=
1 -
d =
-
-
Vx
·
VECTOR ACECERACION MEDIA :
âmedia :
Aut
--
At
·
VECTOR ACELERACION INSTANTNEA :
nos dice la aceleración en cada instante .
cey :
se dibuja en el punto: D
-ys I2
4x
a =
ax
. +
ay
-
-
j
A
la =
a = Vaa
ty2 =
ax
-> ESTUDio DE LOS MOViMIENTOS
·
MRU MOVIMIENTO RECTILINEO UNFORME
TRAYECTORIA =
recta
VELOCIDAD =
constante
S =
V .
t
↓
=
0
t =
0
S =
So + V t .
X-
0
=
SC
t
8
0
=
·
HRUA MOVIMIENTO RECTiLINEO UNFORMEMENTE ACELERADU
TRAYECTORIA : recta
ACELERACION :
constante
v t at (s 2)
1 at
Vo + S Vot Su Vot
1
=
a .
=
+
= +
+
, MECANICA - CiNE HATiCA CASE 1
↓
DiNÁMICA
-
TRABAJO-ENERGIA
FLUIDOS , ESTADISTICA
-
DiNAMICA
BADIOACTIVIDAD
TERMODINAMICA
¿ ElECTRICIDAD ?
CINEMATICA
Parte de La fisica que estudia el movimiento .
MAGNiTUDES :
7 :
tiempo (s)
S
espacio (m)
:
v velocidad (m/s)
:
a =
aceleración (m/s")
-> ESTUDIO VECTORIAL
Recordamos :
a
a =
b +
c
b
12 send =
cat opuesto =
1
C
hipotenusa G
cost = cat
contiguo - C
-
hipotenusa a
tyd
=
cat opuesto
=
b
cat
contiguo c
·
VECTOR DE POS: CON : nos dice donde se encuentra la particula móvil en cada instante .
y - -P(x y) ,
i
- - - -
- -
I
↳
b .
r i
i x
yj
= +
0 X
S: conocemos las ecuaciones del movimiento "" e
"" podemos obtener la ewacici de la
trayectoria (camino recorridol .
-
x
fr(t) Despejo "" en una de las ecuaciones y
sustituyo en la Otra
=
.
y
=
fz(t) -
, la la posición
VECTOR DE DESPLAZAMIENTO Es el
final
·
:
aue une posición inicial con .
·*
Er
S Ar= T FE -
⑧
·
VECTOR UELOCIDAD MEDIA :
Umedia-- Art
At
·
VECTOR UECOCIDAD INSTANTANEA :
nos dirá la velocidad en cada instante .
se
dibuja en el
punto en el que se enwentre el móvil .
= vxi =
v j
.
Y a
~
--- 12 sUX
No
El vector tiene un modulo :
IrIV =
vx V· +
dirección oxl
y
una
Cángulo formado can
ty
=
1 -
d =
-
-
Vx
·
VECTOR ACECERACION MEDIA :
âmedia :
Aut
--
At
·
VECTOR ACELERACION INSTANTNEA :
nos dice la aceleración en cada instante .
cey :
se dibuja en el punto: D
-ys I2
4x
a =
ax
. +
ay
-
-
j
A
la =
a = Vaa
ty2 =
ax
-> ESTUDio DE LOS MOViMIENTOS
·
MRU MOVIMIENTO RECTILINEO UNFORME
TRAYECTORIA =
recta
VELOCIDAD =
constante
S =
V .
t
↓
=
0
t =
0
S =
So + V t .
X-
0
=
SC
t
8
0
=
·
HRUA MOVIMIENTO RECTiLINEO UNFORMEMENTE ACELERADU
TRAYECTORIA : recta
ACELERACION :
constante
v t at (s 2)
1 at
Vo + S Vot Su Vot
1
=
a .
=
+
= +
+