100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting - Wiskunde 'Module 12; analytische meetkunde' GO! Onderwijs

Puntuación
-
Vendido
-
Páginas
3
Subido en
24-06-2023
Escrito en
2022/2023

Dit document is een samenvatting van 'Module 12; analytische meetkunde', uit het boek 'NANDO 4D' voor het vak Wiskunde in het GO! Onderwijs in de doorstroomfinaliteit/ASO.

Institución
Grado








Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Escuela secundaria
Estudio
2e graad
Grado
Año escolar
4

Información del documento

Subido en
24 de junio de 2023
Número de páginas
3
Escrito en
2022/2023
Tipo
Resumen

Temas

Vista previa del contenido

Analytische meetkunde

1. SCALAIR PRODUCT OF INPRODUCT VAN TWEE VECTOREN

1.1 Norm van een vector
Definitie
De norm van een vector ⃗ AB is de grootte van de vector en wordt gelijkgesteld aan de lengte van het
lijnstuk [AB]. -> ‖⃗
AB‖=¿ AB ∨¿
Formule
Als A(x1, y1) en B(x2, y2) dan:
‖⃗AB‖=¿ AB ∨¿ = √ ( x 2−x 1 ) ²+( y 2 − y 1)²
AB‖=√ a +b ²
AB ) = (a, b), dan: ‖⃗
of als co(⃗ 2

Afstandsformule
¿ AB∨¿ = √ ( x 2−x 1 ) ²+( y 2 − y 1)²

1.2 Scalair product of inproduct van twee vectoren
Definitie
Het scalair product van twee vectoren u⃗ en ⃗v is gelijk aan het product van de norm van u⃗ , de norm
van ⃗v en de cosinus van de georiënteerde hoek tussen u⃗ en ⃗v . -> u⃗ ⋅⃗v =‖u⃗‖⋅ ‖⃗v‖⋅ cos ( u^
⃗ , ⃗v )
Eigenschap 1
2
u⃗ ⋅ ⃗u=‖u⃗‖ -> u⃗ ⋅ ⃗u =( u⃗ )2
= ‖u⃗‖⋅ ‖u⃗‖⋅cos 0°
2
= ‖u⃗‖
Eigenschap 2
u⃗ ⊥ ⃗v ⇔ ⃗u ⋅ ⃗v =0 -> u⃗ ⊥ ⃗v ⇨ ⃗u ⋅ ⃗v = ‖u⃗‖⋅ ‖⃗v‖⋅ cos 9 0 °
=0

1.3 Analytische uitdrukking van het inproduct van twee vectoren
Definitie
Het inproduct of scalair product van de vectoren u⃗ (x1, y1) en ⃗v(x2, y2) is de som van het product van
de x-coördinaten en het product van de y-coördinaten. -> u⃗ ⋅ ⃗v =x1 x 2+ y1 y 2

1.4 Hoek tussen twee vectoren
Formule
Als co(u⃗ ) = (x1, y1) en co( ⃗v ) = (x2, y2) dan:
x1 ⋅ x 2+ y 1 ⋅ y 2
cos ( ⃗u^
, ⃗v ) =
Bewijs
√x + y ⋅ √x + y
2
1
2
1
2
2
2
2


Gegeven: u⃗ met coördinaat u⃗ (x1, y1)
⃗v met coördinaat ⃗v (x2, y2)
Oplossing:
1) u⃗ ⋅ ⃗v =‖u⃗ ‖⋅‖⃗v‖⋅ cos ( u^
⃗ , ⃗v )

met: ‖u⃗‖= x 21+ y 21
lm ‖u⃗‖= √ x + y 2
2
2
2
2) u⃗ ⋅⃗v =x1 x 2+ y1 y 2
Besluit: ‖u⃗‖⋅ ‖⃗v‖⋅ cos ( u^
⃗ , ⃗v ) ¿ x 1 x 2 + y 1 y 2
x1 ⋅ x 2+ y 1 ⋅ y 2 1
cos ( ⃗u^
, ⃗v ) =
‖u⃗‖⋅ ‖⃗v‖
x1 ⋅ x 2+ y 1 ⋅ y 2

cos ( ⃗u^
, ⃗v ) = 2 2 2 2
4,99 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
thibauttaminiau Katholieke Universiteit Leuven
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
71
Miembro desde
2 año
Número de seguidores
22
Documentos
339
Última venta
1 semana hace

3,8

12 reseñas

5
5
4
3
3
2
2
0
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes