100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Otro

Mathématiques - Logarithme Népérien

Puntuación
-
Vendido
-
Páginas
17
Subido en
01-03-2023
Escrito en
2020/2021

commence par une introduction générale sur le sujet. La première unité traite des généralités, avec une problématique posée et une démonstration qui introduit le concept de fonction logarithmique. La deuxième unité se concentre sur les propriétés algébriques des fonctions logarithmiques et présente les règles de calcul ainsi que des exemples pour illustrer ces règles. La troisième unité est dédiée à l'équation lnx=m (où m est un réel) et explore les solutions de cette équation. La quatrième unité étudie la fonction logarithme népérien, avec une présentation de son sens de variation, ses limites en 0 et l'infini positif, un tableau de variations, une représentation graphique, ainsi que d'autres limites et la dérivée de la fonction ln u. La cinquième unité est consacrée au logarithme décimal et la sixième unité aborde l'échelle logarithmique. Le document présente des exemples pour illustrer chaque concept et utilise des tableaux, des graphiques et des formules pour expliquer les propriétés des fonctions logarithmiques.

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
1 de marzo de 2023
Número de páginas
17
Escrito en
2020/2021
Tipo
Otro
Personaje
Desconocido

Temas

Vista previa del contenido

L1-SDG-Mathématiques 1 P. Loup - L. Bonifas




Module 4:
Logarithme Népérien

Table des matières

Unité 1 - Généralités.................................................................................................................. 2
I - Introduction ................................................................................................................................... 2
1 ) Problématique ............................................................................................................................................ 2
2 ) Démonstration............................................................................................................................................ 2
II - Premières propriétés ................................................................................................................... 4
Unité 2 - Propriétés algébriques ............................................................................................... 5
I - Règles de calcul ............................................................................................................................. 5
II - Exemples ...................................................................................................................................... 6
Unité 3 - L’équation lnx=m (où m est un réel) ........................................................................ 8
Unité 4 - Etude de la fonction logarithme népérien................................................................. 8
I - Sens de variation de la fonction logarithme népérien sur 0;+ ............................................ 8

II - Limites de la fonction logarithme népérien en 0 et l’infini positif .......................................... 8
III - Tableau de variations ................................................................................................................ 9
IV - Représentation graphique ....................................................................................................... 10
V - Autres limites ............................................................................................................................. 11
1 ) Mises en place de nouvelles limites ......................................................................................................... 11
2 ) Exemples.................................................................................................................................................. 12
VI - Dérivée de la fonction ln u ....................................................................................................... 13
Unité 5 - Le logarithme décimal ............................................................................................. 16
Unité 6 - Echelle logarithmique .............................................................................................. 17




Page

,L1-SDG-Mathématiques 1 P. Loup - L. Bonifas




Module 4:
Logarithme Népérien

Unité 1 - Généralités


I - Introduction

C’est un baron écossais du nom de Néper qui inventa la fonction logarithme au seizième siècle.
En ce temps là, les calculatrices n’existaient pas, ce qui engendrait des calculs numériques
fastidieux, notamment en présence de multiplications.

L’objectif de Néper était donc d’introduire une fonction transformant les multiplications en
additions afin de simplifier les calculs.



1 ) Problématique

D’un point de vue mathématique, l’idée est de chercher une fonction numérique f définie et
dérivable sur 0;+ , telle que : a  0, b  0, f (ab) = f (a) + f (b)

On montre, que s’il existe une fonction f solution de ce problème alors sa dérivée vérifie la

k
propriété suivante :  k  IR, x  0, on a : f '( x) =
x

2 ) Démonstration

Supposons donc qu'il existe une fonction f solution du problème,


soit a  0 et  la fonction définie par : t  0,  (t ) = f (a t )


La fonction  est dérivable (puisque la fonction f est dérivable) et on peut calculer sa dérivée de
deux manières différentes.

Calcul de la dérivée de 


- 1ère méthode : en appliquant la dérivation des fonctions composées.

En effet,  (t ) = f u (t ) avec u (t ) = at .


Page

, L1-SDG-Mathématiques 1 P. Loup - L. Bonifas


Comme : (f u(t ) ) ' = u '(t )  f '(u(t )) , on en déduit que :  '(t ) = a  f '(a t )

- 2ème méthode : calcul direct

On a : t  0,  (t ) = f (at ) = f ( a) + f (t )

Donc : t  0,  '(t ) = ( f (a) + f (t ) ) ' = f '(t )


De ces deux calculs, on en déduit l’égalité suivante : t  0, a f '(a t ) = f '(t )

En particulier, si on prend t = 1 on a : a f '(a) = f '(1)


k
On pose k = f '(1) et on conclut que : a  0, f '(a ) =
a

k
La variable étant muette, cela revient à écrire que : x  0, f '( x) =
x

On vient donc de démontrer, que sous certaines conditions, s’il existe une fonction transformant
k
la multiplication en addition alors sa dérivée est nécessairement de la forme : x  0, f '( x) = .
x

Il découle de cela le théorème suivant :




Théorème :


Il existe une unique fonction f définie sur 0;+ , dérivable, telle que

1
x  0; + , f '( x) = et f (1) = 0
x

Cette fonction est appelée logarithme népérien de x et est notée : ln x




Page
5,49 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
vivin02pro

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
vivin02pro Montpellier I
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
2 año
Número de seguidores
0
Documentos
8
Última venta
-

0,0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes