100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Ecuaciones Diferenciales en Derivadas Parciales

Puntuación
-
Vendido
-
Páginas
23
Subido en
17-02-2023
Escrito en
2022/2023

Incluye los métodos de resolución de las siguientes ecuaciones: -Ecuaciones diferenciales en derivadas parciales de primer orden. -Ecuación de Ondas. -Ecuación de Calor. -Ecuación de Laplace. También incluye la teoría acerca de las series de Fourier para resolver las ecuaciones.

Mostrar más Leer menos










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Información del documento

Subido en
17 de febrero de 2023
Número de páginas
23
Escrito en
2022/2023
Tipo
Notas de lectura
Profesor(es)
María higuera
Contiene
Todas las clases

Vista previa del contenido

ECUACIONES DIFERENCIALES ENDERIVADAS PARCIALES DE
PRIMERORDEN



CONSERVADON
LEYES DE AD



·
u(x.t) Magnitud(masa, energia etc.


·
p(x, t, u,u(...) Flujo


f(x, t, u) Fuentes
·




Let be conservacise forma integral
u(x.t)dx 8(x2 0/15
1)"20x
·
on =

-




20
Lex be conservacios forma diferencial (i.e., AX):
Gv(X,t) g
·
X2 x1
*
en + +
=




2/




ONDAS ESTACIONARIAS



La ecuacio's diferencial en derivadas parciales mas simple para una funcion de dos variables
es 0
=




t


Para resolverla integramos a ambos lados de la ecacion:
2u(s,y)ds u(t,t) u(0,4
= -
0




por esola solucion dela forma:u(t,x) f(x),
as conde
f(x) w(0.4)
= =




El lnico requerimiento es
que f(x) sea sufficientements regular.


La solucion representa una anda estacionaria (no depende del tiempol.



ONDAS VIAJERAS. ECUACION DETRANSPORTE



Considers la siguiente ecuacion:
Gu cayto +




Aesta ecuacion se la conoce can nombred ecuacion de transporte.

Es necesario especificar la solucion en untiempo inicial, dando lugar al problema devalores iniciales. ults, x) f(x)
=
&tCR

xU
u(t,y)
x(t)"du-2u+Oudoet
11x
x =




d* (t
=(t)
a
=
=
+
1 >
Curva caracteristic
LX (t k
+




considere unobservador describiendo una trajectoria (x (t), 4). Como varia what) segan la perspectiva del observator?

du du(x(t),t)
uxdy ut
=
=




dt dt

,dy c
=




ydy u++..
=




Por tanto las soluciones de la ecuacion de transporte son las mismas
que las del sistema de EDOs.


Ut (uX 0
+
=
dx 0
=




dt




u(t,y) f(X) =



du=o
Eiemple.

xU
+chy=
Gu 0;u(0,X) f(X
=




2t




u(t,y)
x(t)du-2u+Oudoet
11x
x = LX (t k
+




d* (t caracteristic
=(t)
u
a
=
=
1
+ >
Curva
f(x) w(0,X)
=




x(t) (t 11
= +

1(0) 5 = +
k7 5 =




↑ ↑




u(t,X(t)) k2u(0) f(s)
f(s) ke
=
=
= =




+
it
X(t,s) (t =
s
+
+
5 1 = -
ct

Yu(t, x) f(x (t)
=

ult,x) f(x ct.)
=




u(t,s) f(s);u(x,t)
f(x ct)
=

=
-




ECUACIONES CASI-LINEALES:METODO DE LAS CARACTERISTICAS


a(x,y,u)ux p(X,y,u)ay ((X,y,u)(I) +
=




15) (a,p,c).(ux,uy, 1)
+
= 0
Gualquier curva superficie S tiene vector tangente a (a,p,c)


has curvas caracteristicas satisfacen el signiente sistema:



EX a(x,y,u);d b(x,y,u);du can see
=
= -




La elacion (1) tiene condiciones iniciales:u/f(s), g(s)) h(s),
=
se



Entonces el sistema tiene condiciones iniciales:



1(0) 10(s,0)
=
=

f(s),y(0) y0(s.0) =g(s), =
w(0) 40(s,0) h(s)
=
=

, Ejemplo:

S.u u(X,y)
=




5:H(x,y,u) u(x,y)
=
-
u 0
=




dy ((X,y,u) u(t,s) 0
=

=




dy a(X,y,n) x(t,5) 0
=
=




dy=b(x,y,u) y(t,s) 0 =




y(0) X(s);y(0) y(s);u() u(s)
= = =




S:(X,y,u)(t,s)



METODO PARA RESOLVER LAS ECUACIONES CASILINEALES
DE LAGRANGE




Ejemploi



u,isent
1,ux x*7 yu
1
+
=
10(s) 8
=




tolst=s
no(s) sen(s)




u1o."1.
s

e
=




·
La solucion aparece de form a
(0-426
/4 (00*7c8R
7




( (, (1,1,u) x
-
=
11i
=
=
=




by X
=
implicita, como interseccion de dos
Dt


(* (2u*
du u
dly: /0u (0 4(0,4,u) = Superficies.In
=
su +
u
=
=
=
= ·




bt ↑
&




solucion general:FCP IFFFuncion = arbritarial sF( = =0 f(4242) ve*
= =




u(0,y) sen(y)= 5(4e(2) senye*;5(4)= seny
+
=




ne*k senle*(2):u(,1) eksenlie*2)
= =
12,49 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
AeroLibrary

Conoce al vendedor

Seller avatar
AeroLibrary Universidad Politécnica de Madrid
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
2 año
Número de seguidores
0
Documentos
0
Última venta
-

Estudiante de segundo curso de Ingeniería Aeroespacial en la Universidad Politécnica de Madrid. Todas las asignaturas aprobadas hasta la fecha con una media de 8.

0,0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes