100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solutions Manual for Physical Principles of Plasma Physics and Engineering 3rd Edition By Alexander Fridman, Lawrence Kennedy

Puntuación
-
Vendido
1
Páginas
189
Grado
A+
Subido en
27-01-2023
Escrito en
2022/2023

Solutions Manual for Physical Principles of Plasma Physics and Engineering, 3e by Alexander Fridman, Lawrence Kennedy Solutions Manual for Physical Principles of Plasma Physics and Engineering, 3e by Alexander Fridman, Lawrence Kennedy

Mostrar más Leer menos
Institución
Physical Principles Of Plasma
Grado
Physical Principles of Plasma











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Physical Principles of Plasma
Grado
Physical Principles of Plasma

Información del documento

Subido en
27 de enero de 2023
Número de páginas
189
Escrito en
2022/2023
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Solutions Manual for Physical Principles of

Plasma Physics and Engineering, 3e by Alexander

Fridman, Lawrence Kennedy (All Chapters)
PART 1.



CHAPTER 2.



2.7.1. Electron Energy Distribution Functions. If electron energy distribution function is

Maxwellian and the electron temperature is Te = 1eV, (1) what is the mean velocity <v> of the electrons in

this case?, (2) what is the mean electron energy?, (3) which electron energy m<v> 2/2 corresponds to the

mean velocity?, (4) how can you explain the difference between the two “average electron energies” in

terms of standard deviation?

The mean electron velocity <v> corresponding to the Maxwell velocity distribution function:

f (v) = 4v 2 (m / 2Te ) 3 exp(−mv Te )

can be found after integration as:  v = 8Te / m . Numerically at Te = 1eV,


 v = 0.7 108 cm / sec . The mean electron energy in this case according to (2.1.2) is   = 1.5 eV .

Electron energy corresponding to the mean velocity can be found as: m  v  = 4Te /  , and

numerically at Te = 1eV gives the “average” electron energy about 1.3 eV. The difference between these

two “average” energies is due to the difference between mean square velocity and square of the mean

velocity, which corresponds to the variance or the square of the standard deviation of the velocity

distribution.



2.7.2. Ionization Potentials and Electron Affinities. Why are most ionization potentials (Table

2.1.1) greater than electron affinities (Table 2.1.2)?


1

, Ionization potentials are related to the electron-ion coulomb interaction energies, which are

usually greater than the electron-neutral coulomb interaction energies corresponding to electron affinities. It

should be noted however that the exchange interaction energies can make significant additional

contribution in both cases.



2.7.3. Positive and Negative Ions. Why is it very doable to produce the double- or multi-charged

positive ions such as A++ or A+++ in plasma, and impossible to generate in a practical gas discharge

plasmas the double or multi-charged negative ions such as A-- or A----?

Generation of the multi-charged positive ions such as A++ or A+++ obviously requires energies

greater than conventional ionization potentials (Table 2.1.1) but can be achieved at very high plasma

temperatures. Formation of the multi-charged negative ions such as A-- or A---- requires an electron

attachment to a negative ion. Such processes are suppressed in gas phase because the coulomb repulsion

energies (corresponding to the electron-ion interaction) are usually much stronger than the quantum

mechanical affinity corresponding to the exchange interaction.



2.7.4. Mean Free Path of Electrons. In which gases are the mean free path of electrons with

electron temperature Te = 1eV longer and why? (helium, nitrogen or water vapor at the similar pressure

conditions)?

Noble gases are characterized by the lowest electron-neutral elastic-collision cross-sections (no

significant long-distance polarization interaction). Therefore, at electron temperatures about Te = 1eV when

the elastic collisions dominate, the longest mean free path should be expected in the noble gases (in this

example, in helium) in accordance with Eq. (2.1.3).



2.7.5. Reaction Rate Coefficients. Recalculate the Maxwellian electron energy distribution

function into the electron velocity distribution function f(v) and then find an expression for reaction rate

coefficient Eq. (2.1.7) in the case when  =  0 = const.

The Maxwell velocity distribution function is related to the Maxwell energy distribution function

(2.1.1) by the equation: f (v)  dv = f ( )  d . Simple derivation results in the velocity distribution:



2

, f (v) = 4v 2 (m / 2Te ) 3 exp(−mv Te )

The reaction rate coefficient (2.1.7) can be found by integration:

k =   0 v f (v)dv =  0  v =  0 8Tm



2.7.6. Elastic Scattering. Charged particle scattering on neutral molecules with permanent

dipole momentum can be characterized by the following cross section dependence on

energy:  ( ) = Const /  . How does the rate coefficient of the scattering depend on temperature in this

case?

The scattering rate coefficient can be calculated in this case based on the Eq. 2.1.7 as:

const 1 1
k =   ( )v f (v)dv =   f ( )d =  ,
  T

which reveals the required temperature dependence.



2.7.7. Direct Ionization by Electron Impact. Using Eq.(2.2.8) for the general ionization

function f(x), find the electron energy corresponding to maximum value of direct ionization cross- section.

Compare this energy with the electron energy optimal for direct ionization according to the Thomson

formula.


Electron energy appears in the Eq. (2.2.6) only as x= , therefore simple differentiation of f(x)
I
in (2.2.8) gives the optimal x and therefore optimal electron energy to compare with x=2 for the Thompson

formula.



2.7.8. Comparison of Direct and Stepwise Ionization. Why does the direct ionization make a

dominant contribution in non-thermal electric discharges while in thermal plasmas stepwise ionization is

more important?

The degree of electronic excitation in thermal plasma is usually much higher than in non-thermal

plasma, which explains the high effectiveness of the stepwise ionization in this case.




3

, 2.7.9. Stepwise Ionization. Estimate a stepwise ionization reaction rate in Ar at electron

temperature 1 eV, assuming quazi-equilibrium between plasma electrons and electronic excitation of

atoms, and using Eq.(2.2.19).

Based on the Eq. (2.2.19), ratio of stepwise and direct ionization rate coefficients can be calculated

as:

k is (Te ) I 7
 ( ) 2 = (16eV / 1eV ) 3.5  1.6 10 4
k i (Te ) Te

The direct ionization rate coefficient k i (Te ) in Ar at electron temperature 1 eV can be found

−15
from the Eq. (2.2.11) as 2 10 cm3 / sec . Therefore, the stepwise ionization rate coefficient kis (Te ) in

Ar at electron temperature 1 eV can be estimated as 3 10 −11 cm3 / sec .


2.7.10. Electron Beam Propagation in Gases. How does the propagation length of a high

energy electron beam depend on pressure at fixed temperature? How does it depend on temperature at a

fixed pressure?

As seen from (2.2.22) and (2.2.23), the propagation length is inversely proportional to the gas

density (  1 / n0 ). Taking into account the equation of state ( p = n0T ), the electron beam propagation

length decreases proportionally to pressure at fixed temperature, and increases proportionally to

temperature at constant pressure.



2.7.11. Photoionization. Why can the photoionization effect play the dominant role in

propagation of both non-thermal and thermal discharges in fast flows including supersonic ones? What is

the contribution of photoionization in the propagation of slow discharges?

Propagation of the fast flow discharges, and especially supersonic flow discharges, cannot be

supported by transfer of active and energetic heavy particles as well as temperature (which simplify the

ionization conditions), because the propagation of the heavy particles is limited by velocities much lower

than speed of sound. Contribution of photoionization in such systems can be crucial, because it is not



4
22,30 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
tutorsection Teachme2-tutor
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
7466
Miembro desde
3 año
Número de seguidores
3245
Documentos
5853
Última venta
5 horas hace
TutorSection

Best Educational Resources for Student. We are The Only Original and Complete Study Resources Provider in the Market. Majority of the Competitors in the Market are Selling Fake/Old/Wrong Edition files with cheap price attraction for customers.

4,1

1121 reseñas

5
658
4
200
3
100
2
55
1
108

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes