100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

[23-24] Business Intelligence & Business Analytics complete summary IM

Puntuación
5,0
(2)
Vendido
28
Páginas
88
Subido en
15-06-2022
Escrito en
2021/2022

A complete summary of the lecture slides, recorded videos, and live lectures. Passed the course with a 7.5 by only studying this summary.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
15 de junio de 2022
Número de páginas
88
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

Summary
Business Intelligence &
Business Analytics

,Table of Contents
1. Week 1 lecture 1: Introduction to Data Management & Business Intelligence .................................. 1
1.1. Course introduction...................................................................................................................... 1
1.2. Introduction to Business Intelligence / Analytics ......................................................................... 2
1.3. Introduction to Databases ............................................................................................................ 4
1.4. Relational database ...................................................................................................................... 5
1.5. Week 1: Book materials................................................................................................................ 7
2. Week 1 lecture 2: Introduction to data warehousing ......................................................................... 9
3. Week 2 lecture 3: ETL, OLAP business databases & business dashboards ....................................... 20
4. Week 3 lecture 4: Data Mining Introduction..................................................................................... 29
4.1. Data Mining Intro ....................................................................................................................... 29
4.2. Data Mining Process(es): overview of the steps involved in data mining.................................. 30
5. Week 3 lecture 5: Regression models ............................................................................................... 34
EXTRA: Intro to Dataframes and Pandas ............................................................................................... 36
6. Week 4 lecture 6: Naïve Bayes Classifier........................................................................................... 37
7. Week 4 lecture 7: k-Nearest Neighbors Classifier ............................................................................. 40
8. Week 4 lecture 8: Performance Measures ........................................................................................ 43
8.1. Evaluating Predictive Performance: numerical (continuous) variables ..................................... 45
8.2. Judging Classifier Performance: categorical variables ............................................................... 46
8.3. Precision and recall..................................................................................................................... 50
9. Week 5 lecture 9: Decision trees ....................................................................................................... 53
10. Week 5 lecture 10: Association rules .............................................................................................. 58
10.1. Generation of frequent itemsets & selecting the strong rules ................................................ 59
11. Week 6 lecture 11: Clustering ......................................................................................................... 64
11.1. Hierarchical clustering .............................................................................................................. 67
11.2. Partitional clustering (k-means for this course) ....................................................................... 69
12. Week 7 lecture 12: Neural Networks .............................................................................................. 73
Quiz questions ....................................................................................................................................... 79
Quiz answers ......................................................................................................................................... 86
Notes ......................................................................................................... Error! Bookmark not defined.

,1. Week 1 lecture 1: Introduction to Data Management & Business
Intelligence

1.1. Course introduction
Data management: “managing data as a valuable
resource.”
Business intelligence (BI) / analytics (BA)?: “data-
driven decision-making”. Transforming data into
meaningful information/knowledge to support
business decision-making.

3 concepts of BI & BA:
Data: items that are the most elementary
descriptions of things, events, activities, and
transactions. Can be internal, external, structured,
unstructured.
Information: organized data that has meaning and value.
Knowledge: processed data or information that is applicable to a business decision problem.




Descriptive analytics: use data to understand past & present.
Diagnostic analytics: explain why something happened.
Predictive analytics: predict future behaviour based on past performance.
Prescriptive analytics: make decisions or recommendations to achieve the best performance.




1

, 1.2. Introduction to Business Intelligence / Analytics
General view definitions:
• Business intelligence: data warehousing + descriptive analytics.
• Business analytics: predictive + prescriptive analytics.

Our view in this course: BI = BA. They are all decision support systems (DSS).

2 definitions of BI:
• Process view (Sharba, 2014): “BI is an umbrella term that combines the processes,
technologies, and tools needed to transform data into information, information into
knowledge, and knowledge into plans that drive profitable business action.”
• Product/output view (Shaberwal, 2011): “BI is information and knowledge that enables
business decision-making.”

BI product, process, solution, and tools:




2
6,49 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Reseñas de compradores verificados

Se muestran los 2 comentarios
2 año hace

2 año hace

It follows the slides very well and is clear and comprehensive.

5,0

2 reseñas

5
2
4
0
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
IMstudentTiU2122 Tilburg University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
182
Miembro desde
3 año
Número de seguidores
94
Documentos
11
Última venta
3 meses hace

3,7

15 reseñas

5
5
4
6
3
1
2
1
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes