100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary of all lectures Medicinal Chemistry and Biophysics

Puntuación
-
Vendido
3
Páginas
79
Subido en
27-10-2021
Escrito en
2021/2022

Summary of all lecture notes of Medicinal Chemistry and Biophysics

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
27 de octubre de 2021
Número de páginas
79
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

Medicinal Chemistry and Biophysics
Lecture 1: Introduction and Thermodynamics
Medicijnen oefenen biologische effecten uit, voor specifieke ziektebeelden is er behoefte aan
specifieke medicijnen.

Medicines are chemicals, interacting with proteins.

Medicines are small molecules:
- NCE: new chemical entities.
- BLA: biologics applications.

Medicinal Chemistry is highly interdisciplinary: Chemistry, Biochemistry, Physics, Biophysics, Biology.

Drug companies want to make money.

Medicinal Chemistry: chemistry plays a key role within the pharmacy. Chemical knowledge is
required to:
- To design and determine the physical/chemical properties of drugs.
- To gain insight into the stability of drugs.
- Absorption and excretion of drugs is partly determined by their chemical properties.
- Metabolism of drugs based is on (bio)chemical transformations.
- The formulation of drugs (administration).
- Quality control of medicines.
- The analysis of drugs and their metabolites.
Biophysics: is the use of light, sound or particle emission (waves) to study a (bio) sample.

Proteins are made of amino acids.

The 3D structure determines the biological activity of drugs:
- Membrane passage.
- Binding to targets.
- Metabolism.
- Pharmacokinetics.

Membranes are made of lipids; water cannot get through. The exterior side is polar, the interior side
is non-polar. Passive membrane passage can be estimated/predicted by the log P value, which is
defined by the physical/chemical properties of the drug. Active transport relies on molecular
recognition (shape) by transport proteins.




PH of solute chosen to generate neutral molecules.
Measure of lipophilicity.

,Lipinski’s rule of five:
- Molecular mass less than 500.
- Log(P) less than 5.
- Less than ten hydrogen bond acceptors (-O-, -N- etc).
- Less than five hydrogen bond donors (NH, OH etc).
The more charged a system → the worse the log(p) → the less effective the drug
→ drug design relays much more on H bonds than on charges
Good absorption requires good solubility in both water and in membranes.

Lipids contain a polar head group and a hydrophobic (non-polar) tail.

Drugs bind to targets:
Paul Ehrlich (1854 – 1915) introduced the idea that the biological effect of almost all compounds was
due to it binding to a target (no alcohol receptor). ‘’Bodies do not act if they are not bound.’’

Lock and key:
- Drugs bind to their target molecules (receptors, enzymes etc.) by the Lock and Key principle
– but the process of binding is dynamic
- First formulated in 1894 by Emil Fisher.
- Example of retinol bound to a transport protein.

Thermodynamics and kinetics: binding is described by the same laws as chemical reactions.
Thermodynamics:
- Describes the equilibrium state.
- Parameter → K.

Kinetics:
- Describes the rate (speed) of the process.
- Parameter → k.




The more stable the products, the more there is present at equilibrium.

Types of interaction:
Covalent:
- Association. →




- Dissociation does not occur.
- No equilibrium, only a (kinetic) rate.

,Non-covalent:




Energetic of drug: target interactions:
- Each new interaction provides a change in (delta G) the Gibbs free energy.
- Gibbs free energy (delta G) is the energy required to build the system from nothing.

For a system to happen: reaction has to move from a high affinity state to a low affinity state.
• Gibbs free energy must drop → larger drop = more successful reaction

Energetics of drug-receptor interactions:




Enthalpy (delta H) and entropy (delta S) are driving forces of a reaction.
Drug design is about making delta G as small as possible (-500).
a.As large as possible (+500) b.As small as possible (-500)

dH = H-bonds
-T x dS = hydrophobics (high in exothermic reaction)

Delta H > 0 (heat) energy is absorbed → reaction is endothermic.
Delta H < 0 (heat) is energy is released → reaction is exothermic.

Delta S (entropy) is a measure of the ordering of the system.
• Entropy up, in exothermic reaction

The speed of the reaction depends on the activation energy.
Negative Gibbs free energy → drugs will bind (heat negative, exothermic, energy release)

, 𝑫𝒆𝒍𝒕𝒂𝑮 = 𝑹 𝒙 𝑻 𝒙 𝒍𝒏(𝑲𝒅)
R = gas constant
T = absolute temperature
Non-covalent binding is achieved by many simultaneous interactions between the ligand and the
macromolecule.

Electrostatic interactions (ion-ion):
- Opposite charges attract. → dependent on distance
- Equal charges repel.
- Typical interaction energy 4-8 kcal/mol.
- Geometry plays an important role.
- Contributes to enthalpy.

Ion-ion dipole:
- Hydrogen bonds; specific orientations that can make H bonds (not distance dependent)
- 1-7 kcal/mol.
- Acceptor: O, N, F.
- Donors: OH and NH.
- Contributes to enthalpy.
- Geometry plays an important role.

Hydrophobic interactions (important for the folding of proteins):
- Entropy (solvation) is the driving force. 1 kcal/mol. Specific fit.
- Assembly with minimal disruption of the solvent.
- Hydrogen bonding networks.
- Contributes to the entropy.
- Geometry is less important.

Role of entropy in Binding:
- Through reduced ligand flexibility → lower entropy.
- Removal of solvation shell around both bindings’ partners → increases entropy.

Single bond in a molecule → free rotation possible: higher level of entropy and higher level of
disorder in solution, can occupy many states
• When its bound, cannot longer move → lost entropy

Contribution of hydrophobic interactions to binding: There is no strong correlation but the trend
seems to be that more 'buried' hydrophobic surface leads to stronger binding.

Enthalpy-entropy compensation: Weaker ionic interactions (ΔH) can be compensated for by
improved hydrophobics (ΔS) and vice versa.
• Smaller dG → molecule binds more tightly
• Smaller -T x dS → adding of hydrophobic constituent

Modifications are cumulative:
- Different optimization routes may lead to the same molecule.
- The effect of two independent substituents is cumulative.
- We refer to a ΔΔG (a change in the ΔG).
12,49 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
eliselammers Rijksuniversiteit Groningen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
27
Miembro desde
6 año
Número de seguidores
13
Documentos
14
Última venta
2 semanas hace

3,0

1 reseñas

5
0
4
0
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes