100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Exercises Market Research Methods

Puntuación
-
Vendido
9
Páginas
42
Subido en
25-10-2021
Escrito en
2021/2022

Summary market research methods - all exercise sessions. Theoretical document is also available

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
25 de octubre de 2021
Número de páginas
42
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

MARKET RESEARCH
METHODS
EXERCISES


SAM STROO

, 1



PART 1: FACTOR ANALYSIS
CHECK THE STATISTICAL ASSUMPTIONS IN SPSS

ó We are looking for multicollinearity between the variables, and we can check this by using 4 measures

1. Correlation matrix
2. Partial correlation/ Anti-image correlation matrix
3. Bartlett’s test of sphericity
4. KMO

THE MEASURES


1. CORRELATION MATRIX

I = table showing the intercorrelations among all variables
I Visual inspection: high (>.30) and not equal (because some structure must exist, because it would
mean that all variables can be grouped together in one factor)
I It is a symmetrical table and the correlation with the same variable is off course 1
I You have to ask for the correlation matrix separately, but you only need to ask for it once at the
beginning of the factor analysis to show that it is meaningful to do the factor analysis

ANALYZE > CORRELATE > BIVARIATE




Here we see the shared correlation between two variables ó Anti-image correlation: the correlation that is left
to be unexplained (we want partial correlation to be as low as possible)

, 2


2. PARTIAL CORRELATION/ANTI-IMAGE CORRELATION MATRIX

o Calculate partial correlation (Analyze > Correlate > Partial) = the correlation between 2 variables that
remains when the effects of other variables are taken into account
o Partial correlation should be low (high = .7) > look at the absolute values
o Anti-image correlation matrix: negative values of partial correlation should all be low
o To get this, we need to check Anti-image (tab descriptives) when we do the PCA analysis in SPSS

ANALYZE > DIMENSION REDUCTION > FACTOR > DESCRIPTIVES




! LOOK AT ANTI-IMAGE CORRELATION, NOT AT THE COVARIANCE ONE!


3. BARLETT’S TEST OF SPHERICITY

ð Are the variables significantly correlated or not?
ð H0: correlation matrix = identity matrix (i.e. the variables are uncorrelated, 1 on the diagonal but
everywhere else it is zero and it means that the variables are uncorrelated and we do not want this)


4. MEASURE OF SAMPLING ADEQUACY (KMO)

= Kaiser-Meyer-Olkin Measure of Sampling Adequacy
= measure calculated for both the entire correlation matrix and each individual variable (see diagonal on anti-
image for individual scores)

, 3


ð Ranges from 0 to 1
ð .80: meritorious/ .70: average / .60: mediocre/ .50: absolute minimum/ <.50: unacceptable
ð We get this by checking KMO and Barlett’s test of sphericity with descriptives
ð We could also see the individual KMO’s in the anti-image correlation table (with an ‘a’ above it)




ASSUMPTIONS IN SUMMARY

ð Strong conceptual foundation (structure exists)/ Variables: metric (NOT binary or categorical), 3-5
items per factor, parsimonious/ Sample size: >100, 10:1 / Everything needs to be on the same scale
ð Correlation matrix: high, not equal / Partial correlation,Anti-image: low values above & below diagonal
ð Bartlett’s test of sphericity: significant & KMO: >.50 // >.60

RUNNING A PCA IN SPSS

Exercise with data pleasure and planning: A supermarket chain asked 500 of its customers to fill in a
questionnaire which contained 12 questions about shopping behaviour, all on a 7 point Likert scale

ð 2 underlying dimensions found: pleasure and planning (confirmatory factor analysis, but if we don’t
know it beforehand it is exploratory)
ð Next: perform PCA analysis

ANALYZE > DIMENSION REDUCTION > FACTOR

- Descriptives: initial solution, KMO, anti-image
- Extraction: principal components, correlation matrix (not in ouput, but standardizes the items for
you), unrotated solution, scree plot, eigenvalues >1 (because it is an exploratory factor analysis)
- Rotation: varimax (= rotation method), rotated solution
- Options: exclude cases listwide, sorted by size (to sort them), suppress small coefficients (to get a
better overview)
6,99 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
shw1999 Universiteit Gent
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
459
Miembro desde
6 año
Número de seguidores
307
Documentos
0
Última venta
1 semana hace

3,3

34 reseñas

5
6
4
10
3
11
2
1
1
6

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes