100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Otro

Samenvatting Analyse

Puntuación
3,0
(1)
Vendido
10
Páginas
16
Subido en
17-01-2015
Escrito en
2013/2014

Een overzicht van de belangrijke begrippen en stellingen in de (pure) analyse. Het is gebaseerd op het vak Inleiding Analyse aan de UU en het bijbehorend dictaat van E. van der Ban.

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
17 de enero de 2015
Número de páginas
16
Escrito en
2013/2014
Tipo
Otro
Personaje
Desconocido

Vista previa del contenido

Stellingen, lemma’s en definities dictaat

Hoofdstuk 1, Limieten en continuı̈teit

1.1 De afstand in Rn

Lemma 1.2 (Ongelijkheid van Cauchy-Schwarz)
Voor ieder tweetal x, y ∈ Rn geldt:
| < x, y > | ≤ ||x||||y||
(Deze ongelijkheid is een gelijkheid dan en slechts dan als x en y lineair onafhankelijk zijn).

Lemma 1.3
Voor alle x, y ∈ Rn en λ ∈ R geldt:
(a) ||x|| ≥ 0 en ||x|| = 0 ⇐⇒ x = 0
(b) ||λx|| = |λ|||x||
(c) ||x + y|| ≤ ||x|| + ||y|| (driehoeksongelijkheid)

Gevolg 1.5
(a) (’Herhaalde driehoeksongelijkheid’) Voor alle m ≥ 2, x1 , ..., xm ∈ Rn geldt:

||x1 + ... + xm || ≤ ||x1 || + ... + ||xm ||

(b) (’Omgekeerde driehoeksongelijkheid’) Voor alle x, y ∈ Rn geldt:

||x − y|| ≥ |||x|| − ||y|||

Lemma 1.7 Voor elke x ∈ Rn geldt: Pn
(a) |xi | ≤ ||x|| voor alle 1 ≤ i ≤ n. (b) ||x||leq i=1 |xi |. Opmerking: hiervoor zijn alleen algemene eigen-
schappen van de norm (1.3) gebruikt, dit geldt derhalve voor elke norm.



1.2 Limieten van functies

Definitie 1.12
Laat f : Rn → Rm een functie zijn, en a ∈ Rn en b ∈ Rm punten. Men zegt dat f in a de limiet b (notatie:
limx→a f (x) = b) als voor iedere  > 0 een δ > 0 bestaat met de volgende eigenschap: Als x ∈ Dom(f ) en
d(x, a) < δ, dan d(f (x), b) < 

Lemma 1.16
Zij f : Rn → Rm , a ∈ Rn en b ∈ Rm . Dan zijn de volgende beweringen equivalent:
(a) limx→a f (x) = b;
(b) limx→a d(f (x), b) = 0

Definitie 1.17
Is a ∈ Rn en r > 0, dan definieren we de (open) bol met middelpunt a en straal r door:

B(a; r) = {x ∈ Rn | d(x, a) < r}


Definitie 1.12’
Met de definitie van bollen kunnen we de limiet-definitie als volgt herschrijven:
Voor elke  > 0, bestaat er een δ > 0, zodat f (Dom(f ) ∩ B(a; δ)) ⊂ B(b; ).

Opmerking 1.19
Er kan zich de merkwaardige situatie voordoen dat een functie f : Rn → Rm meer dan één limiet heeft voor
x → a, Dit gebeurt as er een δ > 0 bestaat zodat B(a; delta) ∩ Dom(f ) = ∅.
Bewering: Veronderstel dat er een δ > 0 bestaat zo dat B(a; δ) ∩ Dom(f ) = ∅. Dan geldt dat voor elke
b ∈ Rm dat limx→a f (x) = b.



1

,Definitie 1.20
Zij A ⊂ Rn . Onder een limietpunt van A verstaan we een punt a ∈ Rn met de volgende eigenschap:
voor alle δ > 0 geldt: B(a; δ) ∩ A 6= ∅

Lemma 1.22 (eenduidigheid van limiet)
Zij f : Rn → Rm een functie en a een limietpunt van Dom(f ). Veronderstel dat b, c ∈ Rm en dat
limx→a f (x) = b en limx→a f (x) = c. Dan geldt b = c.



1.3 Rekenregels voor limieten

Lemma 1.25 (Somregel)
Laat f : Rn → Rm en g : Rn → Rm functies zijn, en a ∈ Rn en b, c ∈ Rm punten.
Als limx→a f (x) = b en limx→a g(x) = c, dan limx→a (f (x) + g(x)) = b + c.

Lemma 1.26 (Productregel)
Laat f : Rn → R en g : Rn → Rm functies zijn, en a ∈ Rn , λ ∈ R, b ∈ Rm .
Als limx→a f (x) = λ en limx→a g(x) = b, dan limx→a f (x)g(x) = λb.

Lemma 1.28 (Quotientregel)
Laat f : Rn → R een functie, a ∈ Rn en λ ∈ R, λ 6= 0.
1
Als limx→a f (x) = λ, dan limx→a f (x) = λ1

Lemma 1.30
Laat f : Rn → Rm een functie zijn en a ∈ Rn en b ∈ Rm punten. Dan zijn de volgende beweringen equiva-
lent:
(a) limx→a f (x) = b;
(b) limx→a fi (x) = bi voor alle 1 ≤ i ≤ m

Lemma 1.32
Laat f : Rn → Rm en g : Rm → Rp functies zijn, en a ∈ Rn , b ∈ Rm en c ∈ Rp punten.
Als limx→a f (x) = b en limy→b g(y) = c dan limx→a g(f (x)) = c.



1.4 Limieten en ongelijkheden

Lemma 1.33
Laat D ⊂ Rn zijn en a een limietpunt van D. Laat f, g : D → R functies zijn en veronderstel dat
limx→a f (x) = b en limx→a g(x) = c met b, c ∈ R.
Als f (x) ≤ g(x) voor alle x ∈ D dan geldt ook: b ≤ c.
Opmerking: strikte ongelijkheden blijven niet altijd behouden. Neem als voorbeeld D =]0, ∞] en f (x) = 0,
g(x) = x.

Lemma 1.35 (Insluitstelling)
Laat D ⊂ Rn en f, g, h : D → R een drietal functies met f (x) ≤ g(x) ≤ h(x) voor alle x ∈ D. Veronderstel
dat a ∈ Rn en dat er een λ ∈ R bestaat met limx→a f (x) = λ en limx→a h(x) = λ.
Dan geldt ook limx→a g(x) = λ.



1.5 Continuiteit

Definitie 1.38
Een functie f : Rn → Rm heeft continu in een punt a ∈ Rn als a ∈ Dom(f ) en bovendien: limx→a f (x) =
f (a).
De functie f heet continu op een verzameling A ∈ Rn als f continu is in elk punt a ∈ A. De functie f heeft
continu als hij continu is op Dom(f ).




2

, Lemma 1.41
Zij f = (f1 , ..., fm ) : Rn → Rm een functie en a ∈ Rn een punt. Dan zijn de volgende uitspraken gelijk-
waardig:
(a) De functie f is continu in a;
(b) Voor iedere 1 ≤ i ≤ m is de funcite fi continu in a.

Lemma 1.43
Laat f, g : Rn → Rm functies zijn en a ∈ Rn een punt. Als f en g continu zijn in a, dan is de somfunctie
f + g dat ook.

Lemma 1.44
Laat f : Rn → R en g : Rn → Rm functies zijn en a ∈ Rn een punt.
(a) Als f en g continu in a dan is f g dat ook.
(b) Als f continu is in a en bovendien geldt dat f (a) 6= 0, dan is ook de functie 1/f : x → 1/f (x) continu in a.

Lemma 1.45
Iedere rationele functie op Rn is continu op zijn domein.

Lemma 1.47
Laat f : Rn → Rm en g : Rm → Rp functies zijn.
(a) Is f continu in a en g continu in f (a), dan is de samenstelling g ◦ f continu in a.
(b) Zijn f en g continu op hun domein, dan is ook g ◦ f continu op zijn domein.



1.6 Toepassing: rekenregels voor differentieren

Veronderstel dat I ⊂ R een interval met meer dan één punt.
Definitie 1.49
Zij f : I → Rn en a ∈ I. De functie f heeft differentieerbaar in a als er een vector v ∈ Rn bestaat met:

f (x) − f (a)
limx→a =v
x−a

Lemma 1.53
Laat f : I → Rn differentieerbaar zijn in a. Dan is f continu in a.

Lemma 1.54
Zij f = (f1 , ..., fn ) : I → Rn een functie en a ∈ I. De functie f is differentieerbaar in a dan en slecht dan
als elke van de functies fi (1 ≤ i ≤ n) differentieerbaar is in a. Is f differentieerbaar in a dan geldt:

f 0 (a) = (f10 (a), ..., fn0 (a))


Lemma 1.55
Laat f, g : I → R differentieerbaar zijn in a ∈ I, zij λ ∈ R. Dan zijn ook de functies f + g, f g en λf
differentieerbaar in a. Voorts geldt:
(a) (f + g)0 (a) = f 0 (a) + g 0 (a)
(b) (f g)0 (a) = f 0 (a)g(a) + f (a)g 0 (a)
(c) (λf )0 (a) = λf 0 (a)
Is bovendien g(a) 6= 0 dan is ook de functie f /g differentieerbaar in a, en er geldt:
 0 0
(a)g 0 (a)
(d) fg (a) = f (a)g(a)−f g(a)2

Stelling 1.56 (De kettingregel)
Zij f : I → R, a ∈ R, J ⊂ R een interval dat f (I) bevat en g : J → R. Als f en g differentieerbaar zijn in
a, resp. f (a), dan is g ◦ f differentieerbaar in a, met afgeleide:

(g ◦ f )0 (a) = g 0 (f (a))f 0 (a)




3
4,49 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Reseñas de compradores verificados

Se muestran los comentarios
5 año hace

3,0

1 reseñas

5
0
4
0
3
1
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
RichardSchoonhoven Universiteit Utrecht
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
60
Miembro desde
10 año
Número de seguidores
34
Documentos
18
Última venta
10 meses hace

3,3

6 reseñas

5
1
4
2
3
2
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes