100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Apuntes ingeniería biomedica

Puntuación
-
Vendido
-
Páginas
205
Subido en
22-08-2021
Escrito en
2021/2022

apuntes completos que ayudara al cursado de la carrera ingeniería biomédica












Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Información del documento

Subido en
22 de agosto de 2021
Número de páginas
205
Escrito en
2021/2022
Tipo
Notas de lectura
Profesor(es)
Salica
Contiene
Todas las clases

Vista previa del contenido

CÁLCULO II – INTEGRAL INDEFINIDA 2020

CÁLCULO II – INTEGRAL INDEFINIDA

El problema abordado en la Asignatura Cálculo I fue, dada una función f hallar su función derivada
.
Ahora nos ocuparemos del problema inverso: dada la función derivada , queremos determinar la
función original f.
Muchas aplicaciones del Cálculo se relacionan con ésta situación.


Ejemplo 1:
Determine la función f tal que su derivada es
Resolución:
De lo que sabemos de derivada podemos proponer como solución



Pensando que

[ ]

Pero no es la única función que podemos haber propuesto, por ejemplo, también



Pensando que

[ ]

Y también


Pensando que

* +

Y podemos escribir una expresión general para la función f buscada



Pensando que

[ ]

Todas las funciones propuestas son solución del problema.
Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán
1

, CÁLCULO II – INTEGRAL INDEFINIDA 2020
Las funciones se denominan antiderivadas de y la función f se denomina antiderivada
de general .
Para evitar confusiones, usaremos letras mayúsculas para denotar las antiderivadas de una función.




DEFINICIÓN
Una función F es una antiderivada o primitiva de una función f si y solo si




Volviendo al Ejemplo 1:
Las funciones son primitivas de y la función f es la primitiva general de .




Teorema: Representación de Antiderivadas
Si F es una antiderivada de f en un intervalo I entonces G es una antiderivada de f en el intervalo I
si y sólo si G es de la forma , donde C es una constante.


La operación de encontrar la antiderivada general de una función se denomina INTEGRACIÓN y
se denota con de la siguiente manera:








Función Diferencial de Una Constante de
integrando la variable de primitiva integración
integración



A ∫ se denomina integral indefinida de y se lee “integral de f de x diferencial de x”.


Volviendo al Ejemplo 1:
El resultado obtenido lo podemos escribir con el símbolo de integral indefinida de la siguiente
manera



Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán
2

, CÁLCULO II – INTEGRAL INDEFINIDA 2020
Observación:
La ecuación ∫ admite muchas soluciones, que difieren en una constante entre si. Eso
significa que las gráficas de dos primitivas cualesquiera de son traslaciones verticales una de la
otra.
La siguiente gráfica muestra varias primitivas
de la forma







En muchas de las aplicaciones de la integración
se nos da suficiente información como para
determinar una primitiva particular. Para
hacerlo, solamente necesitamos conocer un
punto de la primitiva particular que estamos
buscando , a esta información se la
llama condición inicial.




RESULTADO
La integración y la diferenciación son operaciones inversas.
Demostración
• Primero vamos a probar que la diferenciación es el proceso inverso de la integración

[∫ ] [∫ ]

[ ]
[ ]




Por lo tanto , la diferenciación es la proceso inverso de la integración

Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán
3

, CÁLCULO II – INTEGRAL INDEFINIDA 2020
• Segundo probaremos que la integración es la operación inversa de la diferenciación.

∫[ ] ∫



Por lo tanto , la integración es la operación inversa de la diferenciación


Estas características de procesos inversos, nos permiten obtener reglas de integración directamente
de las reglas de derivación


TEOREMA: Reglas Básicas de Integración
1.- Regla de la Constante



2.- Regla de la Potencia



3.- Regla del múltiplo constante

∫ ∫

4.- Regla de la suma o diferencia

∫[ ] ∫ ∫



Ejemplo 2:
Determine la integral indefinida

∫ √ ∫ ∫( √ )


∫ ∫ ∫



Resolución:

∫ √ √



∫ ∫


Facultad de Ciencias Exactas y Tecnología Universidad Nacional de Tucumán
4
6,59 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
florlopezcarrasco

Documento también disponible en un lote

Thumbnail
Package deal
Apuntes ingeniería biomedica
-
2 2021
€ 13,17 Más información

Conoce al vendedor

Seller avatar
florlopezcarrasco Universidad Nacional de Tucuman
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
4 año
Número de seguidores
0
Documentos
2
Última venta
-

0,0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes