100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

MAT1510 EXAM PACK 2026

Puntuación
-
Vendido
1
Páginas
128
Grado
A+
Subido en
18-01-2026
Escrito en
2025/2026

MAT1510 Latest exam pack questions and answers and summarized notes for exam preparation. Updated for 2026 exams . For assistance Whats-App.0.6.7..1.7.1..1.7.3.9 . All the best on your exams!!

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
18 de enero de 2026
Número de páginas
128
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

MAT1510
EXAM PACK




FOR ASSISTANCE WITH THIS MODULE +27 67 171 1739

, lOMoARcPSD|53028991




ASSIGNMENT 02
MAT1510 EXAM 2025
Due date: Friday, 31 May 2024
Total Marks: 100
UNIQUE ASSIGNMENT NUMBER: 186115

ONLY FOR YEAR MODULE

This assignment covers chapter 2 of the prescribed book as well as the study guide

DO NOT USE A CALCULATOR.

Question 1: 13 Marks

Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give
an example that disproves the statement.

(1.1) If f is a function, then f (s + t) = f (s) + f (t). (3)

(1.2) If f (s) = f (t), then s = t. (2)

(1.3) If f is a function, then f (3x) = 3f (x). (3)

(1.4) A vertical line intersects the graph of a function at most once. (2)
1
(1.5) If f is one-to-one, then f −1 (x) = . (3)
f (x)

Question 2: 9 Marks

The perimeter of a rectangle is 16 meters.

(2.1) If the length of one of the sides of the rectangle is (1 + x) meters, express the area A of the (4)
rectangle in terms of x.

(2.2) Calculate the maximum area of the rectangle. (3)

(2.3) What are the dimensions of the rectangle when its area is a maximum? (2)

Question 3: 6 Marks

Suppose a stone is thrown vertically upwards with a velocity of u meters per second. Then its height is h (in
meters) after t seconds is given by the formula
h = ut − 4.8t 2 .


(3.1) Suppose the stone is thrown upwards with a velocity of 24 meters per second. Sketch the (5)
graph of the function defined by
h = ut − 4.8t 2 .
Label the axes properly, and show the coordinates of the critical points on the graph clearly.


16


Downloaded by Edger Tutora ()

, lOMoARcPSD|53028991




MAT1510/101/0/2023


(3.2) What is the maximum height that the stone reaches? (1)


Question 4: 6 Marks

Sketch the graph of the function g(x) which is piecewise-defined by

(4.1) (4)

2
−x + 2x + 3
 if x < 1
g(x) = 4 if x = 1

 2
x − 2x + 5 if x > 1


(4.2) Explain why g is called a function. (1)

(4.3) Is g a one-to-one function? Give a reason for your answer. (1)


Question 5: 20 Marks




The sketch shows the graph of the functions f and g. Function f is defined by

y = f (x) = m|x − p| + q


17


Downloaded by Edger Tutora ()

, lOMoARcPSD|53028991




and g is defined by

y = g(x) = ax 2 + bx + c
S is the salient point of the graph of f , and T is the turning point of the graph of g. The two graphs intersect
each other at T and R.

(5.1) Determine the value of m, p and q and then write down the equation of f . (4)

(5.2) Describe the steps of the transformation process that you would apply to the graph of f to (3)
obtain the graph of y = 5|x|.

(5.3) Find the values of a, b and c and then write down the equation of g. (4)

(5.4) Determine the coordinates of T . (2)

(5.5) Use the graph of f and g to solve the inequality (3)
f (x)
<1 for x ∈ (−2, 4).
g(x)
(Do not solve the inequality algebraically.)

(5.6) Suppose the function d describes the vertical distance between the graph of f and g on the
interval [−2, xT ] ( where xT is the x-coordinate of T ).
(a) Complete and simplify the equation (2)

d(x) = ................ for x ∈ [−2, xT ].
(b) What is the maximum vertical distance between the graphs of f and g on the interval (2)
[−2, xT ].

Question 6: 11 Marks

Suppose a function g is defined by

y = g(x) = 7 + 6x − x 2

(6.1) Restrict the domain of g such that the function gr defined by (2)
gr (x) = g (x) for all x ∈ Dgr ,
is one-to-one function, and such that the domain Dgr contains only positive numbers.

(6.2) Determine the equation of the inverse function gr−1 and the set Dg −1 . (3)
r


(6.3) Show that (6)
gr ◦ gr−1

(x) = x for x ∈ Dg −1
r

and
gr−1 ◦ gr (x) = x

for x ∈ Dgr .



18


Downloaded by Edger Tutora ()
2,69 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
EduPal University of South Africa (Unisa)
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
149366
Miembro desde
7 año
Número de seguidores
35998
Documentos
4397
Última venta
2 horas hace

4,2

13594 reseñas

5
7828
4
2693
3
1799
2
455
1
819

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes