Cubic polynomials and equations
:
Long division :
step-by-step :
3+22+3
Example
:
divide ✗
by x I
-
1 .
I -
I 23+22+0×+3 -
must have of ;xZ;x ; constant
-
> . ~µf >
÷ IT 23+22+0×+3
E- I
¥ +22+0×+3
-
g.
✗
←
/
-
His xD -
3 .
#
.
2×2 +
Ox
a- , 23+22+0×+3 -
(2×2-22)
,
I> Is -22 '
2×+3
>
2×-2
I
a.
2- I 23+22+0×+3 35+2×+2 ] Factor / answer
-
(23-5) to .
2- I 23+22+0×+3
a
2×2 -
His xD -
> i.
a
2×2 +
Ox
2×+4 -
(2×2-22)
5. 2- I 23+22+0×+3 '
2×+3
-
(2×-2)
a
22£
-
5) remainder
(x3+x
>
3) ÷ Ex 13=>5+2×+2 5
-
+
-
. .
rem .
6.
I T -
x
>
+22+0×+3
s If
xD
-
a
2×2 +03C Example
:
222 -23C f- ( 2×3-3>5-11×+6
I. Divide
by 2+2
=
2=2-7×-3
+23C 2+22×3 -3×2-11×+6
7. 2- I 23+22+0×+3 -
(2×3+4×2)
-
(23-22) .
-7×2-112
a
2×2 +
Osc -
(-7×2 -
tax )
-
(2×2-22) .
3×+6
2x (3×+6)
'
-
0
nt①+Z
.
. :(2×3-3>(2-11×+0) :-(✗ + 2) =
2×2-7×+3
•
a- I
-
23+22+0×+3
-
His xD -
a
2×2 +
Ox
23£
'
:
Long division :
step-by-step :
3+22+3
Example
:
divide ✗
by x I
-
1 .
I -
I 23+22+0×+3 -
must have of ;xZ;x ; constant
-
> . ~µf >
÷ IT 23+22+0×+3
E- I
¥ +22+0×+3
-
g.
✗
←
/
-
His xD -
3 .
#
.
2×2 +
Ox
a- , 23+22+0×+3 -
(2×2-22)
,
I> Is -22 '
2×+3
>
2×-2
I
a.
2- I 23+22+0×+3 35+2×+2 ] Factor / answer
-
(23-5) to .
2- I 23+22+0×+3
a
2×2 -
His xD -
> i.
a
2×2 +
Ox
2×+4 -
(2×2-22)
5. 2- I 23+22+0×+3 '
2×+3
-
(2×-2)
a
22£
-
5) remainder
(x3+x
>
3) ÷ Ex 13=>5+2×+2 5
-
+
-
. .
rem .
6.
I T -
x
>
+22+0×+3
s If
xD
-
a
2×2 +03C Example
:
222 -23C f- ( 2×3-3>5-11×+6
I. Divide
by 2+2
=
2=2-7×-3
+23C 2+22×3 -3×2-11×+6
7. 2- I 23+22+0×+3 -
(2×3+4×2)
-
(23-22) .
-7×2-112
a
2×2 +
Osc -
(-7×2 -
tax )
-
(2×2-22) .
3×+6
2x (3×+6)
'
-
0
nt①+Z
.
. :(2×3-3>(2-11×+0) :-(✗ + 2) =
2×2-7×+3
•
a- I
-
23+22+0×+3
-
His xD -
a
2×2 +
Ox
23£
'