QUESTION 1
1.1 Solve for x :
1
1.1.1 3 x+ =4 (4)
x
2
1.1.2 x −2 x>3 (4)
2
1.1.3 x −6 x +6=0 (correct to 2 decimal points) (4)
1.1.4 x 2+ 8 x−4=0 (by completing the square, leave your answer in surd form) (5)
1.2 Solve x and y simultaneously.
y−x =−1 and y +7=x 2+2 x (6)
1.3 For which value/s of x will the expression
√ 4−x be non-real?
x−6
(3)
1.4 Simplify, without the use of a calculator:
x+1
4
1.4.1 √ 3 √ 48− 2x (4)
2
n+1 n−2
12 .27
1.4.2 2 n−1 (5)
18
1.5 Without solving the equation, determine the nature of the roots for the following
expression:
2
2 x +5 x +2=0 (3)
[38]
QUESTION 2
2.1 If x=120 ° and y=28° , calculate the value of:
4.1.1 ¿ (2)
cos2 x+ sin 2 x
4.1.2 × 2tany (2)
tany
2
2.2 and θ ∈(90 ° ;270 ° )
Given sinθ =
4
Calculate cosθ without the use of a calculator. (4)
1|Page www.summariessa.co.za Mathematics
Grade 11 March Paper 1
, sin ( 90 °−θ ) . tan (−θ ) . cos (θ+180 °)
2.3 Simplify:
cos ( 180 °+ θ ) .cos ( 90°+θ)
(4)
2.4 Solve θ without using a calculator:
3 tanθ=√ 3 for θ ∈[0 ° ; 360 ° ] (2)
2.5 Simplify to a single trigonometric ratio: √ (1−sinθ)¿ ¿ (3)
2.6 Prove that: ¿ (3)
[22]
GRAND TOTAL: 60 MARKS
2|Page www.summariessa.co.za Mathematics
Grade 11 March Paper 1