100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Lineaire Algebra

Rating
-
Sold
-
Pages
6
Uploaded on
26-10-2023
Written in
2020/2021

Dit document bevat een samenvatting met voorbeelden van het vak Lineaire Algebra, behorende tot jaar 1 van de studie Farmaceutische Wetenschappen.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
October 26, 2023
Number of pages
6
Written in
2020/2021
Type
Summary

Subjects

Content preview

Samenvatting Lineaire Algebra
Lengte van een vector: |(𝑎𝑏)| → √𝑎2 + 𝑏²

Scalar is een getal wat je met de vector vermenigvuldigd: 𝑐 (𝑎𝑏) = (𝑐𝑎
𝑐𝑏
)

Van a naar b = b – a
Van b naar a = a – b

Punt (a, b, c) → ai + bj + ck



Matrices vermenigvuldigen
𝑔 𝑗
(𝑑𝑎 𝑏 𝑐
𝑒 𝑓) ∙ (ℎ 𝑘 ) = (𝑚
𝑜
𝑛
𝑝)
𝑖 𝑙
2x3 3x2

m = ag + bh + ci
n = aj + bk + cl
o = dg + eh + fi
p = dj + ek + fl



Inverse
(10 0
1
= 𝐼2
)
1 0 0
(0 1 0) = 𝐼3
0 0 1
A ∙ I = 𝐴−1 → 𝐴−1 ∙ A = I

Ax = b → x = 𝐴−1 ∙ b



Getransponeerde matrix
𝐴𝑇 is de getransponeerde matrix. Dat wil zeggen 𝐴𝑗𝑖 → 𝐴𝑖𝑗 . Oftewel spiegelen in de hoofddiagonaal
1 4
A = (14 2 3
5 6
) 𝐴𝑇 = (2 5)
3 6
Een matrix heet symmetrisch als A = 𝐴𝑇

, Hoeken in een driehoek
𝑎2 = 𝑏 2 + 𝑐 2 - 2𝑏𝑐 cos 𝛼
𝑏 2 = 𝑎2 + 𝑐 2 - 2𝑎𝑐 cos 𝛽
𝑐 2 = 𝑏 2 + 𝑎2 - 2𝑏𝑎 cos 𝛾



In product
a∙b (𝑎𝑎1 ) ∙ (𝑏𝑏1 )
2 2
inproduct: 𝑎1 𝑏1 + 𝑎2 𝑏2
𝑎∙𝑏
Hoek tussen twee vectoren met behulp van in product: cos 𝛼 = |𝑎| |𝑏|
→ Er is een hoek van 90° als het inproduct 0 is.



Determinant
𝑎1 𝑏1
Determinant is → |𝑎 | = 𝑎1 𝑏2 − 𝑏1 𝑎2
2 𝑏2
𝑎 𝑑 𝑔 + − +
𝑒 ℎ 𝑑 𝑔 𝑑 𝑔
|𝑏 𝑒 ℎ| = a | |− + −|
𝑓 𝑖| – b | 𝑓 𝑖 | + c | 𝑓 𝑖 |
𝑐 𝑓 𝑖 + − +

Een matrix heeft een inverse als de determinant niet gelijk is aan 0
𝑎1 𝑏1 𝑥
(𝑎 ) ( ) = (𝑐𝑐1 ) → oplossen met de regel van Cramer
2 𝑏2 𝑦 2
𝑐1 𝑏1
|𝑐 |
2 𝑏2
→x= 𝑎1 𝑏1
|𝑎 |
2 𝑏2
𝑎1 𝑐1
|𝑎 𝑐2 |
→y= 𝑎1
2
𝑏1
|𝑎 |
2 𝑏2




Uitproduct
𝑎1 𝑏1 𝑐1
𝑎 𝑐
( 2 ) x (𝑏2 ) = ( 2 )
𝑎3 𝑏3 𝑐3

𝑖 𝑗 𝑘
𝑎
Oplossen van het uitproduct: | 1 𝑎2 𝑎3 |
𝑏1 𝑏2 𝑏3
𝑎2 𝑎3
→i = |𝑏 𝑏 |
2 3
𝑎1 𝑎3
→ j = |𝑏 𝑏 |
1 3
𝑎1 𝑎2
→ k = |𝑏 𝑏 |
1 2

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
danielleband Vrije Universiteit Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
133
Member since
2 year
Number of followers
33
Documents
32
Last sold
6 days ago
Summaries from a Bachelor student Farmaceutische Wetenschappen and master student Drug Discovery Sciences

All the summaries are from courses that I have followed during my bachelor Pharmaceutical Sciences (Farmaceutische Wetenschappen), my minor Biomedical Topics in Health Care, and my master Drug Discovery Sciences (Drug Discovery and Safety) at the Vrije Universiteit (VU) in Amsterdam. If you have any questions, don't hesitate to send me a message. I hope these summaries are helpfull and if so, please give them a rating. Thank you very much and good luck with the courses!

Read more Read less
4,4

23 reviews

5
14
4
7
3
1
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions