100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Calculus for scientists 1 teacher notes package

Rating
-
Sold
-
Pages
49
Uploaded on
31-01-2024
Written in
2023/2024

This is the notes package used by the professor keira gunn at mount royal university in calgary. The package follows the “ third edition calculus early transcendentals” textbook 1-4 and great to look at for theory understanding and problems.

Show more Read less












Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
January 31, 2024
Number of pages
49
Written in
2023/2024
Type
Class notes
Professor(s)
Keira gunn
Contains
Math 1200

Content preview

Math 1200
Calculus I

Fall 2022
Instructor: Keira Gunn

Lecture Notes



1

,Table of Contents 2. Rules for Differentiation 15

2.0 Learning Outcomes 16
2.1 Derivatives of Polynomials and Exponentials 17
Notation
1. Limits, Continuity, and Rates of Change 4
Constant Rule
1.0 Learning Outcomes 5 Power Rule
1.1 Limits 6 Sum of Functions
Exponentials
Limits
2.2 Product Rule and Quotient Rule 18
Limit laws Product Rule
1.2 Evaluating Limits 7 Quotient Rule
When 𝑓(𝑎) Exists 2.3 Derivatives of Trigonometric Functions 19
Infinite Limits Trigonometric Limits
Evaluating Limits Algebraically Trigonometric Functions
2.4 Chain Rule 20
Squeeze Theorem
Composite Functions
1.3 Continuity 8 Chain Rule
Continuity 2.5 Implicit Differentiation 21
Piecewise Functions 2.6 Inverse Trigonometric Functions and Logarithms 21
Intermediate Value Theorem Inverse Trigonometric Functions
1.4 Limits at Infinity 9 Logarithms
𝑥 Approaching Infinity Logarithmic Differentiation
Asymptotes 2.7 Related Rates 22
Related Rates
1.5 Rates of Change 11
Strategies for Solving Related Rates Problems
Average Rate of Change
Tangent Lines
Instantaneous Rates of Change
1.6 The Derivative 13
The Limit Definition of Derivative
Differentiability
Position, Velocity, and Acceleration
The Derivative as a Function




2

,3. Applications of Derivatives 24 4. Integration 38

3.0 Learning Outcomes 25 4.0 Learning Outcomes 39
3.1 L’Hopital’s Rule 26 4.1 Antiderivatives 40
Indeterminate forms Indefinite Integral
L’Hopital’s Rule Antiderivatives
Applying L’Hopital’s Rule
Initial Value Problems
3.2 Local Extrema 27
Intervals of Increase and Decrease 4.2 Areas Underneath Curves 41
Critical Numbers The Velocity Problem
Local Extrema The Definite Integral
First Derivative Test for Local Extrema Riemmann Sums
3.3 Concavity 29 Computing Areas
The Second Derivative 4.3 The Fundamental Theorem of Calculus 44
Concavity of a Graph
FTC I
Inflection Points
The Second Derivative Test for Local Extrema FTC II
3.4 Graphing 30 Net Change Theorem
3.5 Absolute Extrema 31 4.4 Substitution 46
Absolute Maximum and Minimum The Indefinite Integral
Closed and Bounded Intervals The Definite Integral
Single Critical Point Theorem 4.5 Areas Between Curves 47
3.6 Optimization 32 4.6 Average Value of a Function 48
Strategies for Optimization Problems
Average Value Formula
3.7 Linear Approximation 33
Differentials Mean Value Formula for Integrals
Linear Approximation
3.8 Newton’s Method 34
Newton’s Method
Where Newton’s Method Fails
3.9 Mean Value Theorem 35
Rolle’s Theorem
Upper Bound for the Number of Zeroes
Mean Value Theorem




3

, Section 1


Limits, Continuity, and Rates
of Change


4

, Learning Outcomes

By the end of this section, you will be able to:

 Determine the limit of a function at 𝑥 = 𝑎 by looking at the graph of the function.
 Find the limit of a function at 𝑥 = 𝑎 by analyzing the values of the function for values near 𝑎.
 Compute the limit of a function at 𝑥 = 𝑎 algebraically using the limit laws.
 Compute a limit using the Squeeze Theorem
 Find the discontinuities of a function from its graph.
 Find the discontinuities of a function from its equation using limits.
 Find the discontinuities of a piecewise function.
 Use the Intermediate Value Theorem to approximate the location of a root of a function.
 Use the Intermediate Value Theorem to find a lower bound on the number of roots of a function.
 Compute the limit of a function to infinity algebraically.
 Determine the equations of any asymptotes of a function.
 Compute the average rate of change of a function over a specified interval.
 Compute the instantaneous rate of change of a function at a given point.
 Determine the equation of a tangent line to a function at a given point.
 Compute the derivative of a function at a given point.
 Interpret the derivative of a function as the rate of change.
 Determine if a function is differentiable at a point given its graph.
 Find velocity given a position function.
 Find acceleration given a velocity function.
 Compute the derivative of a function.
 Determine the location of any horizontal tangents to a function.




5
CA$14.89
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
anshjuneja

Get to know the seller

Seller avatar
anshjuneja Mount royal university
View profile
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
1 year
Number of followers
0
Documents
1
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions