100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

SB14U Photosynthesis Application/ Thinking Test Questions &Answers

Rating
-
Sold
-
Pages
2
Grade
A+
Uploaded on
14-03-2023
Written in
2022/2023

The following is the answers and questions to a Application and Thinking questions relating to Photosynthesis , Calvin cycle, Photosystem II, ATP, NADH, bf6 complex and EC gradient. The questions are also great practice for this units test as they require to use a lot of knowledge and thinking !

Show more Read less
Institution
12th Grade
Course
Biology








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Secondary school
Study
12th Grade
Course
School year
1

Document information

Uploaded on
March 14, 2023
Number of pages
2
Written in
2022/2023
Type
Exam (elaborations)
Contains
Questions & answers

Content preview

What happens if all the stomata on a C3 plant are closed during the day? What about C4 and
CAM plants?

In a C3 plant, the stroma is open during the day (as they are not in hot and dry environments) and
is closed at night. This occurs because during the day the plant wants to bring in as much light as
possible to aid in the production of ATP. They allow CO2 to enter the plant and go to the Calvin
Cycle to produce glucose so the plant can thrive. If the stroma was to be closed during
photorespiration then the plant would not be able to thrive as there is no CO2 entering the plant,
no CO2 means no food, and no food means the plant will die. Oxygen will also accumulate to
compete with the CO2 for the enzyme with ribusco - which will also impact the production of
glucose in the Calvin Cycle

C4 plants have a different mechanism for coping with carbon fixation, so they are resistant to
lower CO2 levels that would result from the closed stomata during the day. In a CAM plant, the
stroma is open at night and closed during the day (as these plants are located within hot and dry
places, ex. cactus). The plant opens its stroma at night to allow CO2 to enter the plant. Inside the
mesophyll of C4 and CAM plants, CO2 combines with PEP to make oxaloacetate then into
malate. Malate is then transported to the bundle sheath cells where it can be stored in vacuoles.
During the day, when the stomata are closed, malate can be decarboxylated to allow CO2 and
enter the Calvin Cycle to produce glucose.


An alien plant contains chlorophyll a and b pigment in photosystem I and carotenoid in
photosystem II. The plant is placed in a room with no windows and the only source of light is
green light shining from a lamp. What will happen to the plant?

Photosystem II has carotenoids. Since carotenoid absorbs green light, it can still receive the
electron from water, energize at the reaction centre p680, and pass on to the electron transport
chain. As the energized electrons are passed onto the b6f complex, it pumps H+ ions from the
stoma into the lumen to create the electrochemical gradient. It is still possible that ATP synthase
can still use the EC gradient to create ATP through photophosphorylation during chemiosmosis.
However, since photosystem I contains chlorophyll a and b, which does not absorb green light.
With only green light available, photosystem I would not be able to reenergize the electrons since
it reaches photosystem I at the reaction centre p700. Without the electrons being reenergized, it is
unable to provide the energy to NADP reductase to reduce NADP+ to NADPH. Without
NADPH, the Calvin Cycle cannot fix carbon in glucose.


A chemical used to control weeds damages the b6f complex. Is this chemical an effective way to
control weeds? Why or why not.

If the bf6 complex was damaged, it is unable to pump H+ ions from the stroma to the thylakoid
space to create the electrochemical gradient after receiving the energized electrons from
photosystem II. Also, electrons will not be passed onto photosystem I. If electrons are not passed
onto photosystem I, there would be no electrons gaining energy within the photosystem I and
therefore NADPHs cannot be produced. If no NADPHs are produced, then light independent
CA$10.92
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
hamnahkashif

Also available in package deal

Thumbnail
Package deal
Grade 12 Biology & Biochemistry: Notes, Labs, Test answers
-
11 2023
CA$ 116.52 More info

Get to know the seller

Seller avatar
hamnahkashif TutorsC
View profile
Follow You need to be logged in order to follow users or courses
Sold
1
Member since
2 year
Number of followers
1
Documents
16
Last sold
2 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions