100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Summaries of all lecture notes in APM346, you will be good to go if you are able to understand everything shown in the notes

Rating
-
Sold
-
Pages
14
Uploaded on
12-12-2022
Written in
2019/2020

Summaries of all lecture notes in APM346, you will be good to go if you are able to understand everything shown in the notes










Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
December 12, 2022
Number of pages
14
Written in
2019/2020
Type
Class notes
Professor(s)
Justin ko
Contains
All classes

Subjects

Content preview

July 5, 2020 APM346 – Week 8 Justin Ko


1 Fourier Series
The Fourier series of f is of the form

a0 X   nπx   nπx 
f (x) = + an cos + bn sin . (1)
2 n=1
L L

There are 3 main types of coefficients:
1. Full Fourier Series: The coefficients of the (full) Fourier series of f : [−L, L] → R is given by
Z L Z L
1  nπx  1  nπx 
an = f (x) cos dx and bn = f (x) sin dx. (2)
L −L L L −L L

This Fourier series satisfies periodic boundary conditions, f (−L) = f (L) and f 0 (−L) = f 0 (L).
2. Fourier Cosine Series: The coefficients of the Fourier cosine series of f : [0, L] → R is given by
the coefficients of the full Fourier series of the even extension of f :
L
2 L
Z Z
1  nπx   nπx 
an = feven (x) cos dx = f (x) cos dx (3)
L −L L L 0 L
1 L
Z  nπx 
bn = feven (x) sin dx = 0. (4)
L −L L

To compute bn , we used the fact that the product of an even and odd function is odd. This
Fourier series satisfies Neumann boundary conditions f 0 (0) = f 0 (L) = 0.
3. Fourier Sine Series: The coefficients of the Fourier sine series of f : [0, L] → R is given by the
coefficients of the full Fourier series of the odd extension of f :
Z L
1  nπx 
an =
fodd (x) cos dx = 0 (5)
−L L L
1 L 2 L
Z  nπx  Z  nπx 
bn = fodd (x) sin dx = f (x) sin dx. (6)
L −L L L 0 L

To compute an , we used the fact that the product of an even and odd function is odd. This
Fourier series satisfies Dirichlet boundary conditions f (0) = f (L) = 0..

1.1 Derivation of the Fourier Series Using Orthogonality
Suppose (Xn )n≥1 is an orthogonal sequence of functions on [a, b]. The general Fourier series of f is a
series of the form
X∞
f (x) = cn Xn (x).
n=1

To solve for the Fourier coefficient ck , we can take the inner product of both sides by Xk


X

X hf, Xk i
hf, Xk i = cn Xn , Xk = cn hXn , Xk i = ck hXk , Xk i =⇒ ck = . (7)
n=1 n=1
hXk , Xk i

since orthogonality implies that hXn , Xk i = 0 unless n = k.




Page 1 of 14

, July 5, 2020 APM346 – Week 8 Justin Ko


We can use this formula to derive the Fourier coefficients of the full Fourier series. By the product
sum identities, it is easy to check that Xn = cos( nπx nπx
L ) and Yn = sin( L ) for n ≥ 1 and X0 = 2 for
1

n = 0 are orthogonal. The full Fourier series is of f : [−L, L] → R is of the form
∞ ∞ 
X  a0 X  nπx   nπx 
f (x) = a0 X0 (x) + an Xn (x) + bn Yn (x) = + an cos + bn sin .
n=1
2 n=1
L L

Its coefficients for n ≥ 1 are
RL RL
hf, Xn i f (x)Xn (x) dx f (x) cos( nπx
L ) dx 1 L
Z  nπx 
−L
an = = RL = −L
RL = f (x) cos dx
hXn , Xn i X 2 (x) dx cos2 ( nπx L −L L
−L n −L L ) dx
RL RL
hf, Yn i f (x)Yn (x) dx f (x) sin( nπx
L ) dx 1 L
Z  nπx 
−L
bn = = RL = −L
RL = f (x) sin dx
hYn , Yn i Y 2 (x) dx sin2 ( nπx L −L L
−L n −L L ) dx

and the coefficient for a0 is given by
RL RL
hf, X0 i f (x)X0 (x) dx f (x) 21 dx L
Z
−L −L 1
an = = RL = RL 1 = f (x) dx
hX0 , X0 i X02 (x) dx dx L −L
−L −L 22

which is what we get if we naively extend the formula for an to a0 .
Remark 1. The coefficients of the Fourier cosine and sine series can be derived in a similar way. We
can also use symmetry and the uniqueness of the Fourier coefficients to recover these coefficients from
the full Fourier series.
Remark 2. It turns out that the Fourier series form a orthogonal basis on the space of square
integrable functions L2 ([−L, L]). This means that every square integrable function can be written as
a linear combination of its orthogonal basis elements. The Fourier coefficients are an explicit formula
for the scalars in this linear combination.

1.2 Derivation of the Fourier Series Using Least-Square Approximation
Suppose (Xn )n≥1 is an orthogonal sequence of functions on [a, b]. The general Fourier series of f is a
series of the form
X∞
f (x) = cn Xn (x).
n=1

For fixed N ≥ 1, we want to find coefficients (cn ) that minimizes the mean-squared error
N
X 2 Z L N
X 2
EN = EN (c1 , . . . , cN ) = f − cn Xn = f (x) − cn Xn (x) dx.
n=1 L2 −L n=1

We used the notation k · k2L2 = h·, ·i to denote the inner product norm. If we expand the square terms,
then
Z L N
X Z L N
X Z L
EN = |f (x)|2 dx − 2 cn f (x)Xn (x) dx + cn cm Xn (x)Xm (x) dx.
−L n=1 −L n,m=1 −L

N
X N
X
= hf, f i − 2 cn hf, Xn i + c2n hXn , Xn i
n=1 n=1




Page 2 of 14
CA$11.34
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
9kfhgia89h1

Get to know the seller

Seller avatar
9kfhgia89h1 Various
View profile
Follow You need to be logged in order to follow users or courses
Sold
1
Member since
3 year
Number of followers
1
Documents
12
Last sold
3 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions