100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Wiskundige modellen (YI1371)

Rating
-
Sold
4
Pages
54
Uploaded on
20-05-2022
Written in
2021/2022

Volledige samenvatting geziene leerstof (campus de nayer)

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
May 20, 2022
Number of pages
54
Written in
2021/2022
Type
Summary

Subjects

Content preview

Wiskundige modellen

Hoofdstuk 1: Differentiaalvergelijkingen
Hoofdstuk 2: Vectorfuncties
Hoofdstuk 3: Integralen

, Hoofdstuk 1: Differentiaalvergelijkingen
Differentiaalvergelijkingen: = een vgl. die een verband legt tussen een functie y(t) en haar afgeleiden. (t = tijd)
Vergelijking? = relatie tussen variabelen of een relatie tussen een veriabelen en zichzelf
2
bv. Parabool: y = ax + bx + c
Wet van Ohm: V(t) = I(t) R
Differentiaal? Zoals een afgeleide = verandering
bv. Positie, snelheid en versnelling
= relatie tussen een variabele en haar eigen verandering
bv. Luchtweerstand (Werkt je tegen)

Snelheidswijziging (zonder trappen bij het fietsen) (Min zorgt voor de afname
van de snelheid)
= feedback




Vormen van differentiaalvergelijkingen: manieren om een differentiaalvergelijking te beschrijven

1. Letterlijk: “verandering” als functie van de parameters
yʼ(x) = a(x) y(x) + b(x) (meestal gebruikt voor 1e orde)
Ex.: Geef een overzicht van alle types differentiaalvergelijkingen.




bv.
- Klassieke voorstelling van de vergelijkingen van orde 1
- Beginvoorwaarden maken de oplossing uniek (bv. Snelheid op moment 0)

Belang?
Differentiaalvergelijkingen die het gedrag van systemen beschrijven:
- In principe hebben deze systemen geen “keuze” in hun gedrag oplossing is meestal uniek
- startpositie/snelheid/situatie kan verschillen oplossing hangt af van “beginvoorwaarden” of
“randvoorwaarden”
Aantal rand/beginvoorwaarden = de orde van de vergelijking
Bv. Wet van Newton (F(t) =m x”(t)) → beginsnelheid & positie zijn nodig, begin-versnelling heeft geen invloed
Standaard vorm van lineaire differentiaalvergelijking van orde 1:
―> met 1 beginvoorwaarde heeft een unieke oplossing
yʼ(x) = a(x) y(x) + b(x), met y(x ) = c
2. Operator notatie:




3. Algemene vorm van een lineaire differentiaalvergelijking (2)
Lineaire diff. vgl. = een vgl. die een som is van termen,
eventueel vermenigvuldigd met een constante of andere functie.



a0 en a1 kunnen functies zijn, meestal zijn
dit getallen (= makkelijker oplosbaar)

,Oplossingsmethodes voor differentiaalvergelijkingen: hangt af van de vorm

1. Nakijken of een functie een oplossing is




2. Separabele vergelijkingen (orde 1)
NIET LINEAIR!

Nu wel een breuk
Veranderlijke apart schrijven
in




<


Niet maal 0 doen!




3. Algemene methode voor lineaire 1e orde probleem
Homogene vergelijkingen = een vgl. waarvan elke term y(x) bevat of haar afgeleiden.




:
bv. y”(x) - 2 yʼ(x) + 3 y(x) = 0
enkel functies met y(x)
Als y(x) de oplossing is, dan ook elk veelvoud “a y(x)”.
Gevolg: een homogene vergelijking heeft altijd y(x) = 0 als oplossing
Algemene methode, homogeen
Separabele vergelijking



Alle ʻyʼ links

Integraal




Cte a(x) dx
Exponent |y(x)| = e * e

H
= +- eCte
u




Algemene methode, particulier

Stap: 1. 2. 3. ―> “b(x) bestaat hier niet”


a, b en c kunnen verschillen,
andere oefening!




4. Operator methode voor homogene vergelijkingen (orde 2 en hoger)
5. Methode van de onbepaalde coëfficiënten (orde 2 en hoger)
Methode van de nulmakers

, Voorbeeld van de algemene methode:




HW: -x
✗ 2e
e y(x) + 2y(x) - 1 met lim y(x) = 1
✗ → 00
―> 1/2 + 1/2 e




2e orde vergelijkingen:
Algemene methode: Moet minstens 1 zijn anders niet van de 2e orde.
Az X




Stap 1: Homogene vergelijkingen met constante coëfficiënten:



= operator vorm.
Tussenstappen:
- (D - 1) y(x) = 0
P


↳ yʼ(x) - y(x) = 0 ―> yʼ(x) = y(x)
―> y(x) = A e
- (D + 3) y(x) = 0
:
yʼ(x) + 3y(x) = 0
D


Nodig om oefeningen te kunnen oplossen. 3✗
―> y(x) = B e
-




2 nulpunten dus 2 beginvoorwaarden.

Complex α +- βi :
(α + βi) x (α - βi) x
―> y(x) = A e +Be
EULER
αx αx
y(x) = A e cos(βx) + i A e sin(βx)
= Be
αx
cos(+ βx) + i B e
αx
sin(+ βx)
(A + B) e cos(βx) + (iA - iB) eαx sin(βx)
-
αx
-
C D

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Studymotivation Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
89
Member since
3 year
Number of followers
38
Documents
18
Last sold
2 days ago

4.2

5 reviews

5
1
4
4
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions