I - Combinatoire : 3- Probabilité d’un évènement (
𝑛
)=
𝑛!
indépendant : 𝑛1 , 𝑛2 , … , 𝑛𝑘 𝑛1 ! 𝑛2 ! ∙∙∙ 𝑛𝑘 !
1- Définitions : 𝑁(𝐴)
Expérience aléatoire : Toute expérience dont le résultat Soit un évènement 𝐴 ⊂ 𝑆. On a donc : 𝑃(𝐴) =
𝑁(𝑆)
n’est pas connu d’avance est une expérience aléatoire. 𝑁(𝑆) 𝑒𝑠𝑡 𝑙𝑒 𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑡𝑜𝑢𝑠 𝑙𝑒𝑠 𝑟é𝑠𝑢𝑙𝑡𝑎𝑡𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑠
où{ 8- Probabilité conditionnelle :
Espace échantillon : C’est l’ensemble de tous les résultats 𝑁(𝐴) 𝑒𝑠𝑡 𝑙𝑒 𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑟é𝑠𝑢𝑙𝑡𝑎𝑡𝑠 𝑞𝑢𝑖 𝑓𝑎𝑣𝑜𝑟𝑖𝑠𝑒𝑛𝑡 𝐴
Soit 𝐴 et 𝐵 deux évènements d’une expérience aléatoire.
possibles d’une expérience aléatoire qu’on le note par 𝑆.
4- Principe de multiplication : La probabilité de 𝐴 sachant que 𝐵 s’est déjà produit est
Evènement : C’est un sous-ensemble de 𝑆 qu’on le note par donnée par :
Si une tache 𝑇 peut être décomposée de 𝑛 étapes
𝐴, 𝐵, 𝐶 … Si L’évènement est impossible, c’est-à-dire, il ne 𝑁(𝐴∩𝐵) 𝑃(𝐴∩𝐵)
indépendantes, tels que chaque étape peut se réaliser de 𝑛𝑖 𝑃(𝐴/𝐵 ) = = on dit que 𝐴 dépends de 𝐵.
peut pas se produire, alors on le note par ∅. 𝑁(𝐵) 𝑃(𝐵)
façons différentes (1 ≤ 𝑖 ≤ 𝑛), alors le nombre de
Evènements disjoints : Deux évènements sont disjoints si et Théorème : Si 𝐴 et 𝐵 sont indépendants alors :
possibilités de réaliser cette tâche de façons successives
seulement si 𝐴 ∩ 𝐵 = ∅. 𝑃(𝐴|𝐵) = 𝑃(𝐴)
(étape par étape) est 𝑁(𝑆) = 𝑛1 × 𝑛2 × … × 𝑛𝑛
Evènements qui se croisent : Deux évènements se croisent Par conséquent 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵)
ou sont non-disjoints si et seulement si 𝐴 ∩ 𝐵 ≠ ∅. 5- Principe d’addition : De plus, si 𝐴 et 𝐵 sont indépendants, alors :
Evènements équiprobables : Ce sont les évènements qui Si une tache 𝑇 peut être décomposée de 𝑛 étapes *𝐴 et 𝐵’ sont indépendants
ont la même chance de se réaliser. Ce sont les évènements indépendantes, tels que chaque étape peut se réaliser de 𝑛𝑖 *𝐴′ et 𝐵 sont indépendants
indépendants. façons différentes (1 ≤ 𝑖 ≤ 𝑛), alors le nombre de *𝐴′ et 𝐵’ sont indépendants
Partition de S : Soit 𝐸 = {𝐴1 , 𝐴2 , … , 𝐴𝑘 } l’ensemble des possibilités de réaliser une de ces étapes est : Pour tout A et B deux évènements, on a :
évènements de S tels que : 𝑁(𝑆) = 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑛 𝑃(𝐴 ∩ 𝐵) 𝑃(𝐵 ∩ 𝐴) 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐴|𝐵) = = =
𝐴𝑖 ∩ 𝐴𝑗 = ∅ 𝑠𝑖 𝑖 ≠ 𝑗 (1 ≤ 𝑖 ≤ 𝑘 𝑒𝑡 1 ≤ 𝑗 ≤ 𝑘) 6- Tirage de 𝑝 objets dans un ensemble de 𝑛 𝑃(𝐵) 𝑃(𝐵) 𝑃(𝐵)
𝑘 objets distincts : 𝑃(𝐴) = 𝑃(𝐴|𝐵)𝑃(𝐵) + 𝑃(𝐴|𝐵′ )𝑃(𝐵′ )
⋃ 𝐴𝑖 =𝑆 (a) Si le tirage de p objets est ordonné est : car 𝐴 = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐵′ )
{ 𝑖=1 *Avec remise alors le nombre de possibilités est : Remarque : Les naissances, les personnes choisis au hasard
2- Probabilité : 𝑛𝑝 dans une grande population et les pièces au hasard dans
Soit l’application 𝑃 ∶ 𝑆 ⟶ ℝ telle que pour tous *Sans remise alors le nombre de possibilités est : une production sont indépendants.
évènements 𝐴 et 𝐵, si : 𝑛! 𝑠𝑖 𝑝 = 𝑛 9- Formule de binôme :
*0 ≤ 𝑃(𝐴) ≤ 1 et 0 ≤ 𝑃(𝐵) ≤ 1 𝑛! Pour 𝑛 ∈ 𝑁 et pour 𝑎, 𝑏 ∈ 𝑅, on a :
{ 𝑠𝑖 𝑝 < 𝑛 𝑛 𝑛 𝑛
*𝑃(𝑆) = 1 (𝑛 − 𝑝)! (𝑎 + 𝑏)𝑛 = ( ) 𝑎𝑛 𝑏 0 + ( ) 𝑎𝑛−1 𝑏1 + ⋯ + ( ) 𝑎0 𝑏 𝑛
*𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) 𝑠𝑖 𝐴 ∩ 𝐵 ≠ ∅ 0 𝑠𝑖 𝑝 > 𝑛 0 1 𝑛
𝑛
Alors 𝑃 est une probabilité. (b) Si le tirage de 𝑝 objets n’est pas ordonné, alors le 𝑛 𝑛−𝑝 𝑝
= ∑ ( )𝑎 𝑏
Propriétés : Pour tous évènements 𝐴,𝐵 et 𝐶, on a : nombre de possibilités est : 𝑝
𝑝=0
*𝑃(𝐴′ ) = 1 − 𝑃(𝐴) 𝑛 𝑛!
( ) = 𝐶𝑝𝑛 = 𝐶𝑛−𝑝
𝑛
=
*𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) 𝑝 𝑝! (𝑛 − 𝑝)!
*𝑃(𝐴 ∪ 𝐵 ∪ 𝐶) = 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶) − 𝑃(𝐴 ∩ 𝐵) − 7- Arrangement d’objets partiellement
𝑃(𝐴 ∩ 𝐶) − 𝑃(𝐵 ∩ 𝐶) + 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶) distinguables :
*𝑃(𝐴 ∩ 𝐵′ ) = 𝑃(𝐴) − 𝑃(𝐴 ∩ 𝐵) Si on a 𝑛 objets dont 𝑛1 sont de type 1, 𝑛2 sont de type 2,
Remarque : … , 𝑛𝑘 sont de type 𝑘, alors le nombre d’arrangements
*(𝐴 ∩ 𝐵)′ = 𝐴′ ∪ 𝐵′ possibles est :
*(𝐴 ∪ 𝐵)′ = 𝐴′ ∩ 𝐵′
𝑛
)=
𝑛!
indépendant : 𝑛1 , 𝑛2 , … , 𝑛𝑘 𝑛1 ! 𝑛2 ! ∙∙∙ 𝑛𝑘 !
1- Définitions : 𝑁(𝐴)
Expérience aléatoire : Toute expérience dont le résultat Soit un évènement 𝐴 ⊂ 𝑆. On a donc : 𝑃(𝐴) =
𝑁(𝑆)
n’est pas connu d’avance est une expérience aléatoire. 𝑁(𝑆) 𝑒𝑠𝑡 𝑙𝑒 𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑡𝑜𝑢𝑠 𝑙𝑒𝑠 𝑟é𝑠𝑢𝑙𝑡𝑎𝑡𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑠
où{ 8- Probabilité conditionnelle :
Espace échantillon : C’est l’ensemble de tous les résultats 𝑁(𝐴) 𝑒𝑠𝑡 𝑙𝑒 𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑟é𝑠𝑢𝑙𝑡𝑎𝑡𝑠 𝑞𝑢𝑖 𝑓𝑎𝑣𝑜𝑟𝑖𝑠𝑒𝑛𝑡 𝐴
Soit 𝐴 et 𝐵 deux évènements d’une expérience aléatoire.
possibles d’une expérience aléatoire qu’on le note par 𝑆.
4- Principe de multiplication : La probabilité de 𝐴 sachant que 𝐵 s’est déjà produit est
Evènement : C’est un sous-ensemble de 𝑆 qu’on le note par donnée par :
Si une tache 𝑇 peut être décomposée de 𝑛 étapes
𝐴, 𝐵, 𝐶 … Si L’évènement est impossible, c’est-à-dire, il ne 𝑁(𝐴∩𝐵) 𝑃(𝐴∩𝐵)
indépendantes, tels que chaque étape peut se réaliser de 𝑛𝑖 𝑃(𝐴/𝐵 ) = = on dit que 𝐴 dépends de 𝐵.
peut pas se produire, alors on le note par ∅. 𝑁(𝐵) 𝑃(𝐵)
façons différentes (1 ≤ 𝑖 ≤ 𝑛), alors le nombre de
Evènements disjoints : Deux évènements sont disjoints si et Théorème : Si 𝐴 et 𝐵 sont indépendants alors :
possibilités de réaliser cette tâche de façons successives
seulement si 𝐴 ∩ 𝐵 = ∅. 𝑃(𝐴|𝐵) = 𝑃(𝐴)
(étape par étape) est 𝑁(𝑆) = 𝑛1 × 𝑛2 × … × 𝑛𝑛
Evènements qui se croisent : Deux évènements se croisent Par conséquent 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵)
ou sont non-disjoints si et seulement si 𝐴 ∩ 𝐵 ≠ ∅. 5- Principe d’addition : De plus, si 𝐴 et 𝐵 sont indépendants, alors :
Evènements équiprobables : Ce sont les évènements qui Si une tache 𝑇 peut être décomposée de 𝑛 étapes *𝐴 et 𝐵’ sont indépendants
ont la même chance de se réaliser. Ce sont les évènements indépendantes, tels que chaque étape peut se réaliser de 𝑛𝑖 *𝐴′ et 𝐵 sont indépendants
indépendants. façons différentes (1 ≤ 𝑖 ≤ 𝑛), alors le nombre de *𝐴′ et 𝐵’ sont indépendants
Partition de S : Soit 𝐸 = {𝐴1 , 𝐴2 , … , 𝐴𝑘 } l’ensemble des possibilités de réaliser une de ces étapes est : Pour tout A et B deux évènements, on a :
évènements de S tels que : 𝑁(𝑆) = 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑛 𝑃(𝐴 ∩ 𝐵) 𝑃(𝐵 ∩ 𝐴) 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐴|𝐵) = = =
𝐴𝑖 ∩ 𝐴𝑗 = ∅ 𝑠𝑖 𝑖 ≠ 𝑗 (1 ≤ 𝑖 ≤ 𝑘 𝑒𝑡 1 ≤ 𝑗 ≤ 𝑘) 6- Tirage de 𝑝 objets dans un ensemble de 𝑛 𝑃(𝐵) 𝑃(𝐵) 𝑃(𝐵)
𝑘 objets distincts : 𝑃(𝐴) = 𝑃(𝐴|𝐵)𝑃(𝐵) + 𝑃(𝐴|𝐵′ )𝑃(𝐵′ )
⋃ 𝐴𝑖 =𝑆 (a) Si le tirage de p objets est ordonné est : car 𝐴 = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐵′ )
{ 𝑖=1 *Avec remise alors le nombre de possibilités est : Remarque : Les naissances, les personnes choisis au hasard
2- Probabilité : 𝑛𝑝 dans une grande population et les pièces au hasard dans
Soit l’application 𝑃 ∶ 𝑆 ⟶ ℝ telle que pour tous *Sans remise alors le nombre de possibilités est : une production sont indépendants.
évènements 𝐴 et 𝐵, si : 𝑛! 𝑠𝑖 𝑝 = 𝑛 9- Formule de binôme :
*0 ≤ 𝑃(𝐴) ≤ 1 et 0 ≤ 𝑃(𝐵) ≤ 1 𝑛! Pour 𝑛 ∈ 𝑁 et pour 𝑎, 𝑏 ∈ 𝑅, on a :
{ 𝑠𝑖 𝑝 < 𝑛 𝑛 𝑛 𝑛
*𝑃(𝑆) = 1 (𝑛 − 𝑝)! (𝑎 + 𝑏)𝑛 = ( ) 𝑎𝑛 𝑏 0 + ( ) 𝑎𝑛−1 𝑏1 + ⋯ + ( ) 𝑎0 𝑏 𝑛
*𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) 𝑠𝑖 𝐴 ∩ 𝐵 ≠ ∅ 0 𝑠𝑖 𝑝 > 𝑛 0 1 𝑛
𝑛
Alors 𝑃 est une probabilité. (b) Si le tirage de 𝑝 objets n’est pas ordonné, alors le 𝑛 𝑛−𝑝 𝑝
= ∑ ( )𝑎 𝑏
Propriétés : Pour tous évènements 𝐴,𝐵 et 𝐶, on a : nombre de possibilités est : 𝑝
𝑝=0
*𝑃(𝐴′ ) = 1 − 𝑃(𝐴) 𝑛 𝑛!
( ) = 𝐶𝑝𝑛 = 𝐶𝑛−𝑝
𝑛
=
*𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) 𝑝 𝑝! (𝑛 − 𝑝)!
*𝑃(𝐴 ∪ 𝐵 ∪ 𝐶) = 𝑃(𝐴) + 𝑃(𝐵) + 𝑃(𝐶) − 𝑃(𝐴 ∩ 𝐵) − 7- Arrangement d’objets partiellement
𝑃(𝐴 ∩ 𝐶) − 𝑃(𝐵 ∩ 𝐶) + 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶) distinguables :
*𝑃(𝐴 ∩ 𝐵′ ) = 𝑃(𝐴) − 𝑃(𝐴 ∩ 𝐵) Si on a 𝑛 objets dont 𝑛1 sont de type 1, 𝑛2 sont de type 2,
Remarque : … , 𝑛𝑘 sont de type 𝑘, alors le nombre d’arrangements
*(𝐴 ∩ 𝐵)′ = 𝐴′ ∪ 𝐵′ possibles est :
*(𝐴 ∪ 𝐵)′ = 𝐴′ ∩ 𝐵′