MATH 100 midterm review problems:
1. Find the domain of f if
p 2 5 3
f (x) = 3 − |x − 3| + ln −x − x +
8 8
2. Find the domain of
3
f (x) = ln − |x − 1| + |x − 2| − |x − 3|
2
3. Evaluate the following limits or explain why it does not exist:
tan2 (x + 1)
i. lim
x→−1 (x2 − 1) sin(4x + 4)
2
x − 2x − 3
ii. lim− arctan
x→1 x−1
sin2 (x)
iii. lim p
x→0 1 + x sin(x) − cos(x)
|x − 1|
iv. lim 2
x→1 x − 1
√
4. What is f −1 (0) if f (x) = 12 ln(x + 1) − ln x + 2.
5. Use
√ the definition of the derivative as a limit to find the derivative of
f (x) = x
3
6. Use Mathematical induction to show that:
1 + 3 + 5 + ... + (2n − 1) = n2
for all positive integers n .
7. Use induction to show that:
1 1 1 1 1
+ 2 + 3 + ... + n = 1 − n
2 2 2 2 2
for every positive integer n.
1
1. Find the domain of f if
p 2 5 3
f (x) = 3 − |x − 3| + ln −x − x +
8 8
2. Find the domain of
3
f (x) = ln − |x − 1| + |x − 2| − |x − 3|
2
3. Evaluate the following limits or explain why it does not exist:
tan2 (x + 1)
i. lim
x→−1 (x2 − 1) sin(4x + 4)
2
x − 2x − 3
ii. lim− arctan
x→1 x−1
sin2 (x)
iii. lim p
x→0 1 + x sin(x) − cos(x)
|x − 1|
iv. lim 2
x→1 x − 1
√
4. What is f −1 (0) if f (x) = 12 ln(x + 1) − ln x + 2.
5. Use
√ the definition of the derivative as a limit to find the derivative of
f (x) = x
3
6. Use Mathematical induction to show that:
1 + 3 + 5 + ... + (2n − 1) = n2
for all positive integers n .
7. Use induction to show that:
1 1 1 1 1
+ 2 + 3 + ... + n = 1 − n
2 2 2 2 2
for every positive integer n.
1