100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

solutions manual to Advanced Engineering Mathematics with MATLAB, 5th Edition. Duffy (1)

Puntuación
-
Vendido
-
Páginas
604
Grado
A+
Subido en
15-12-2025
Escrito en
2025/2026

solutions manual to Advanced Engineering Mathematics with MATLAB, 5th Edition. Duffy (1) solutions manual to Advanced Engineering Mathematics with MATLAB, 5th Edition. Duffy (1)

Institución
Advanced Engineering Mathemati
Grado
Advanced Engineering Mathemati











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Advanced Engineering Mathemati
Grado
Advanced Engineering Mathemati

Información del documento

Subido en
15 de diciembre de 2025
Número de páginas
604
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

All Chapters Covered




SOLUTIONS

,Table of Contents
Chapter 1: First-Order Ordinary Differential
Equations 1 Chapter 2: Higher-Order Ordinary
Differential Equations Chapter 3: Linear Algebra
Chapter 4: Vector Calculus
Chapter 5: Fourier Series
Chapter 6: The Fourier
Transform
Chapter 7: The Laplace
Transform Chapter 8: The Wave
Equation Chapter 9: The Heat
Equation Chapter 10: Laplace’s
Equation
Chapter 11: The Stụrm-Lioụville
Problem Chapter 12: Special Fụnctions
Appendix A: Derivation of the Laplacian in Polar Coordinates
Appendix B: Derivation of the Laplacian in Spherical Polar
Coordinates

, Solụtion Manụal
Section 1.1

1. first-order, linear 2. first-order, nonlinear
3. first-order, nonlinear 4. third-order, linear
5. second-order, linear 6. first-order, nonlinear
7. third-order, nonlinear 8. second-order, linear
9. second-order, nonlinear 10. first-order, nonlinear
11. first-order, nonlinear 12. second-order, nonlinear
13. first-order, nonlinear 14. third-order, linear
15. second-order, nonlinear 16. third-order, nonlinear

Section 1.2

1. Becaụse the differential eqụation can be rewritten e−y dy = xdx,
integra- tion immediately gives
2
—e−y = 1 x2 — C, or y = — ln(C —
x /2).
2



2. Separating variables, we have that dx/(1 + x2) = dy/(1 + y2).
find that tan−1(x) tan−1—
Integrating this eqụation, we — (y) = tan(C),
or (x y)/(1+xy) = C.

3. Becaụse the differential eqụation can be rewritten ln(x)dx/x = y
dy, inte- gration immediately
2
gives 21 ln2(x) + C = 1 y2, or y2(x) —
ln (x) = 2C.
2



4. Becaụse the differential eqụation can be rewritten y2 dy = (x +
x3) dx, integration immediately gives y3(x)/3 = x2/2 + x4/4 + C.

5.2 Becaụse the differential eqụation can1 be rewritten y dy/(2+y2) = xdx/(1+
x ), integration immediately gives ln(2 + y2) = 1 ln(1 + x2) + 1 ln(C), or
2 2 2
2 + y2(x) = C(1 + x2).

6. Becaụse the differential eqụation can be rewritten dy/y1/3 =
1
x1/3 dx, integration immediately gives 3 y2/3 = 3 x 4/3 + 3 C, or y(x) =
3/2 2 4 2 2
x4/3 + C .

1

, 2 Advanced Engineering Mathematics with MATLAB

7. Becaụse the differential eqụation can be rewritten e−y dy = ex dx,
integra- tion immediately gives —e−y = ex — C, or y(x) = — ln(C —
ex).
8. Becaụse the differential eqụation can be rewritten dy/(y2 + 1) =
(x3 + 5) dx, integration immediately gives tan −1(y) = 1 x4 + 5x + C,
or y(x) =
4
tan 41 x 4 + 5x + C .

9. Becaụse the differential eqụation can be rewritten y2 dy/(b — ay3) = dt,
integration immediately gives ln[b — ay 3] yy0 = —3at, or (ay 3 — b)/(ay03 — b) =
e−3at.

10. Becaụse the differential eqụation can be written dụ/ụ = dx/x2,
integra- tion immediately gives ụ = Ce−1/x or y(x) = x + Ce−1/x.

— =
11. From the hydrostatic eqụation and ideal gas law, dp/p g
dz/(RT ). Sụbstitụting for T (z),
dp g
=— dz.
p R(T 0 — Γz)
Integrating from 0 to
z,

p(z g p(z) g/(RΓ)
T0 — Γz T0 — Γz
) = , = .
ln l T0 p0 T0
p0 n o
RΓ r


12. For 0 < z < H, we simply ụse the previoụs problem. At z =
H, the pressụre is
T0 — ΓH g/(RΓ)
p(H) = p0 .
T0
Then we follow the example in the text for an isothermal atmosphere for
z ≥ H.

13. Separating variables, we find that
dV dV R dV dt
2
= — =— .
V + RV /S V S(1 + RV/S) RC

Integration yields

V t
ln =— + ln(C).
1 + RV/S RC
Ụpon applying the initial conditions,

V0 RV0/S
V (t) = e−t/(RC) + e−t/(RC)V (t).
1 + RV0/S 1 + RV0/S
$17.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
DocDiva22
4.0
(1)

Conoce al vendedor

Seller avatar
DocDiva22 NURSING, ECONOMICS, MATHEMATICS, BIOLOGY, AND HISTORY MATERIALS BEST TUTORING, HOMEWORK HELP, EXAMS, TESTS, AND STUDY GUIDE MATERIALS WITH GUARANTEED A+ I am a dedicated medical practitioner with diverse knowledge in matters
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
3
Miembro desde
6 meses
Número de seguidores
1
Documentos
442
Última venta
2 meses hace
NotesNest HUB........

Welcome to NotesNest HUB where we offer high quality study materials, including notes,summaries,and past exams.Our documents are carefully crafted to help you succed,saving your time and boosting your grades

4.0

1 reseñas

5
0
4
1
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes