SOLUTIONS
, SOLUTION MANUAL
NUMERICAL AND ANALYTICAL METHODS WITH
MATLAB
Table of Contents
Page
Chapter 2 1
Chapter 3 46
Chapter 4 58
Chapter 5 98
Chapter 6 107
Chapter 7 176
Chapter 8 180
Chapter 9 188
Chapter 10 214
Chapter 11 271
Chapter 12 303
Chapter 13 309
Chapter 14 339
@@SSeeisis
mmiciicsisoo
lala
titoionn
, CHAPTER 2
P2.1. Taylor series expansion of f ( x) about x = 0 is:
f '' f ''' f
f ( x) f (0) f ' (0) x2 x3 1V x 4 ...
x (0) (0)
4!
2! 3!
For f ( x) cos ( f (0) 1,
x) ,
f ( x) sin( x), f ' (0) 0,
f ' ' ( x) cos( x), f ' ' (0) 1,
f ' ' ' ( x) sin( x), f ' ' ' (0) 0,
f 1V ( x) cos( x), f 1V (0) 1
We can see that
x x4
2 x6 8
cos( x) 1 x
... 8!
2! 4! 6!
and that
x2
term (k) term (k
1) 2 k (2 k
1)
The following program evaluates cos( x) by both an arithmetic statement
and by the above series for -π ≤ x ≤ π in step of 0.1 .
% cosf.m
% This program evaluates cos(x) by ḅoth arithmetic statement and ḅy
% series for -π ≤ x ≤ π in steps of 0.1 π
clear; clc;
xi=-pi; dx=0.1*pi; for
j=1:21
@@ 1iciicsisoolalatitoionn
SSeeisismm
, x(j)=xi+(j-1)*dx;
cos_arith(j)= cos(x(j));
@@ 2iciicsisoolalatitoionn
SSeeisismm