100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual for A First Course in Differential Equations with Modeling Applications, 12th Edition – Dennis Zill | Verified Solutions | 2025/2026

Puntuación
-
Vendido
-
Páginas
1222
Grado
A+
Subido en
12-12-2025
Escrito en
2025/2026

This official-style solution manual for A First Course in Differential Equations with Modeling Applications, 12th Edition by Dennis Zill offers complete, step-by-step solutions to every problem across all chapters. Perfect for students in calculus, engineering, mathematics, and applied sciences, this manual clarifies key concepts such as: • First-order and higher-order ODEs • Linear differential equations • Modeling applications • Laplace transforms • Series solutions • Systems of differential equations • Numerical methods Designed for US college coursework, this resource helps with homework, quizzes, midterms, finals, and engineering math exam prep. All solutions are clear, accurate, and formatted for fast understanding. Updated for 2025/2026, ensuring alignment with current university requirements.

Mostrar más Leer menos
Institución
Differential Equations With Modelling Applications
Grado
Differential equations with modelling applications











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Differential equations with modelling applications
Grado
Differential equations with modelling applications

Información del documento

Subido en
12 de diciembre de 2025
Número de páginas
1222
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




Solution and Answer Guide
ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024,
9780357760192; CHAPTER #1: INTRODUCTION TO DIFFERENTIAL EQUATIONS


TABLE OF CONTENTS
End of Section Solutions ....................................................................................................................................... 1
Exercises 1.1 ......................................................................................................................................................... 1
Exercises 1.2 .......................................................................................................................................................14
Exercises 1.3 .......................................................................................................................................................22
Chapter 1 in Review Solutions ........................................................................................................................ 30




END OF SECTION SOLUTIONS
EXERCISES 1.1
1. Second order; linear
2. Third order; nonlinear because of (dy/dx)4
3. Fourth order; linear
4. Second order; nonlinear because of cos(r + u)

5. Second order; nonlinear because of (dy/dx)2 or 1 + (dy/dx)2
6. Second order; nonlinear because of R2
7. Third order; linear
8. Second order; nonlinear because of ẋ 2
9. First order; nonlinear because of sin (dy/dx)
10. First order; linear
11. Writing the differential equation in the form x(dy/dx) + y2 = 1, we see that it is nonlinear
in y because of y2. However, writing it in the form (y2 — 1)(dx/dy) + x = 0, we see that it is
linear in x.
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is
linear in v. However, writing it in the form (v + uv — ueu)(du/dv) + u = 0, we see that it is
nonlinear in u.
13. From y = e−x/2 we obtain yj = — 12 e−x/2. Then 2yj + y = —e−x/2 + e−x/2 = 0.




1

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations


6 6 —
14. From y = — e 20t we obtain dy/dt = 24e−20t , so that
5 5
dy 6 6 −20t
+ 20y = 24e−20t + 20 — e = 24.
dt 5 5

15. From y = e3x cos 2x we obtain yj = 3e3x cos 2x—2e3x sin 2x and yjj = 5e3x cos 2x—12e3x sin 2x,
so that yjj — 6yj + 13y = 0.
j
16. From y = — cos x ln(sec x + tan x) we obtain y = —1 + sin x ln(sec x + tan x) and
jj jj
y = tan x + cos x ln(sec x + tan x). Then y + y = tan x.
17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2)−1/2
we have
j −1/2
(y —x)y = (y — x)[1 + (2(x + 2) ]

= y — x + 2(y —x)(x + 2)−1/2

= y — x + 2[x + 4(x + 2)1/2 — x](x + 2)−1/2

= y — x + 8(x + 2)1/2(x + 2)−1/2 = y — x + 8.

An interval of definition for the solution of the differential equation is (—2, ∞) because yj is
not defined at x = —2.
18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
{x 5x /= π/2 + nπ}
or {x x /= π/10 + nπ/5}. From y j= 25 sec 25x we have
j
y = 25(1 + tan 2 5x) = 25 + 25 tan2 5x = 25 + y 2 .

An interval of definition for the solution of the differential equation is (—π/10, π/10). An-
other interval is (π/10, 3π/10), and so on.
19. The domain of the function is {x 4 — x2 /= 0} or {x x /= —2 or x /= 2}. From y j =
2x/(4 — x2)2 we have
2
1
yj = 2x = 2xy2.
4 — x2
An interval of definition for the solution of the differential equation is (—2, 2). Other inter-
vals are (—∞, —2) and (2, ∞).

20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 — sin x /= 0 or sin x /= 1.
Thus, the domain is {x x /= π/2 + 2nπ}. From y j= — (11
2
— sin x) −3/2 (— cos x) we have

2yj = (1 — sin x)−3/2 cos x = [(1 — sin x)−1/2]3 cos x = y3 cos x.

An interval of definition for the solution of the differential equation is (π/2, 5π/2). Another
one is (5π/2, 9π/2), and so on.



2

, Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




21. Writing ln(2X — 1) — ln(X — 1) = t and differentiating x

implicitly we obtain 4

2 dX 1 dX
— =1 2
2X — 1 dt X — 1 dt
2 1 dX t
— =1 –4 –2 2 4
2X — 1 X — 1 dt
–2
2X — 2 — 2X + 1 dX
=1
(2X — 1) (X — 1) dt
–4
dX
= —(2X — 1)(X — 1) = (X — 1)(1 — 2X).
dt

Exponentiating both sides of the implicit solution we obtain

2X — 1
= et
X —1
2X — 1 = Xet — et

(et — 1) = (et — 2)X
et — 1
X= .
et — 2

Solving et — 2 = 0 we get t = ln 2. Thus, the solution is defined on (—∞, ln 2) or on (ln 2, ∞).
The graph of the solution defined on (—∞, ln 2) is dashed, and the graph of the solution
defined on (ln 2, ∞) is solid.

22. Implicitly differentiating the solution, we obtain y

2 dy dy 4
—2x — 4xy + 2y =0
dx dx
2
—x2 dy — 2xy dx + y dy = 0
x
2xy dx + (x2 — y)dy = 0. –4 –2 2 4

–2
Using the quadratic formula to solve y2 — 2x2y — 1 = 0
√ √
for y, we get y = 2x2 ±
4x4 + 4 /2 = x2 ± x4 + 1 . –4

Thus, two explicit solutions are y1 = x2 + x4 + 1 and

y2 = x2 — x4 + 1 . Both solutions are defined on (—∞, ∞).
The graph of y1(x) is solid and the graph of y2 is dashed.




3
$17.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
StudyMuse Chamberlain College Of Nursing
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
73
Miembro desde
4 meses
Número de seguidores
6
Documentos
1637
Última venta
4 días hace
`Trusted Nursing Resources for top marks

High quality nursing notes , summaries , and exam guides. Accurate , concise , and exam focused to help nursing students pass with confidence.

3.3

12 reseñas

5
5
4
0
3
3
2
1
1
3

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes