100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Engineering Electromagnetics – 7th Edition (William H. Hayt) – Solution Manual Overview

Puntuación
-
Vendido
-
Páginas
251
Grado
A+
Subido en
09-12-2025
Escrito en
2025/2026

This summary describes the contents of the Engineering Electromagnetics 7th Edition Solution Manual by William H. Hayt, outlining the solved exercises and detailed problem explanations from each chapter. It includes step-by-step solutions for topics such as electrostatics, magnetic fields, electromagnetic waves, and transmission lines. The material supports students in understanding textbook problems and preparing for exams or assignments.

Mostrar más Leer menos
Institución
Solution Manual
Grado
Solution Manual











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Solution Manual
Grado
Solution Manual

Información del documento

Subido en
9 de diciembre de 2025
Número de páginas
251
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Engineering Electromagnetics - 7th Edition - William H.
Hayt Solution Manual

CHAPTER 1

1.1. Given the vectors M = −10ax + 4ay − 8az and N = 8ax + 7ay − 2az, find:
a) a unit vector in the direction of −M + 2N.
−M + 2N = 10ax − 4ay + 8az + 16ax + 14ay − 4az = (26, 10, 4)
Thus
(26, 10, 4)
a= = (0.92, 0.36, 0.14)
|(26, 10, 4)|

b) the magnitude of 5ax + N − 3M:
(5, 0, 0) + (8, 7, −2) − (−30, 12, −24) = (43, −5, 22), and |(43, −5, 22)| = 48.6.
c) |M||2N|(M + N):
|(−10, 4, −8)||(16, 14, −4)|(−2, 11, −10) = (13.4)(21.6)(−2, 11, −10)
= (−580.5, 3193, −2902)

1.2. The three vertices of a triangle are located at A(−1, 2, 5), B(−4, −2, −3), and C(1, 3, −2).
a) Find the length of the perimeter of the triangle: Begin with AB = (−3, −4, − 8 ) , √B C = (5, 5, 1),
a√nd CA = (−2, √− 1 , 7). Then the perimeter will be ℓ = |AB| + |BC| + |CA| = 9 + 16+ 64 +
25+ 25+ 1+ 4 + 1 + 49 = 23.9.
b) Find a unit vector that is directed from the midpoint of the side AB to the midpoint of side
BC: The vector from the origin to the midpoint of AB is MAB = 1 (A +B) = 1 (−5ax + 2az).
The vector from the origin to the midpoint of BC is MBC = 2 (B + C) = 2 (−3ax + ay − 5az).
The vector from midpoint to midpoint is now MAB − MBC = 1 (−2ax − ay + 7az). The unit
vector is therefore

MAB − MBC (−2ax − ay + 7az)
aMM = = = −0.27a − 0.14ay + 0.95az
|MAB − MBC| 7.35

where factors of 1/2 have cancelled.
c) Show that this unit vector multiplied by a scalar is equal to the vector from A to C and that the
unit vector is therefore parallel to AC. First we find AC = 2ax + ay − 7az, which we recognize
as −7.35 aMM . The vectors are thus parallel (but oppositely-directed).

1.3. The vector from the origin to the point A is given as (6, 2, 4), and the unit vector directed from
the origin toward point B is (2, 2, 1)/3. If points A and B are ten units apart, find the coordinates
of point B.
With 2A = (6, −2, −4)2 and B = 1 B(2,
1
−2, 1), we use the fact that |B − A| = 10, or
|(6 − 3 B)ax − (2 − 3 B)ay − (4 + 3 B)az| = 10
Expanding, obtain
36 − 8B + 4 B2 + 4 − 8 B + 4 B2 + 16+ 8 B + 1 B2 = 100

8± 64−176
or B2 − 8B − 44 = 0. Thus B = = 11.75 (taking positive option) and so

, 2 2 1
B= (11.75)a − − 7.83a + 3.92a
3

,1.4. A circle, centered at the origin with a radius of 2 units, lies in the xy plane. Determ√ine the unit
vector in rectangular components that lies in the xy plane, is tangent to the circle at ( 3, 1, 0), and
is in the general direction of increasing values of y:
A unit vector tangent to this circle in the general increasing y direction is t = √
a φ . Its x and y
components are tx = aφ · ax = − sin φ, and ty = aφ · ay = cos φ. At the point ( 3, 1), φ = 30◦,
and so t = − sin 30◦ax + cos 30◦ay = 0.5(−ax + 3ay).

1.5. A vector field is specified as G = 24xyax + 12(x2 + 2)ay + 18z2az. Given two points, P (1, 2, −1)
and Q(−2, 1, 3), find:
a) G at P : G(1, 2, −1) = (48, 36, 18)
b) a unit vector in the direction of G at Q: G(−2, 1, 3) = (−48, 72, 162), so
(−48, 72, 162)
a = = ( 0.26, 0.39, 0.88)
|(−48, 72, 162)|

c) a unit vector directed from Q toward P :

P−Q (3, 1, 4)
a = = √ = (0.59, 0.20, −0.78)
|P − Q| 26

d) the equation of the surface on which |G| = 60: We write 60 = |(24xy, 12(x2 + 2), 18z2)|, or
10 = |(4xy, 2x2 + 4, 3z2)|, so the equation is

100 = 16x2y2 + 4x4 + 16x2 + 16+ 9z4


1.6. If a is a unit vector in a given direction, B is a scalar constant, and r = xax + yay + zaz, describe
the surface r · a = B. What is the relation between the the unit vector a and the scalar B to this
surface? (HINT: Consider first a simple example with a = ax and B = 1, and then consider any a
and B.):
We could consider a general unit vector, a = A1ax + A2ay + A3az, where A2 + A2 + A2 = 1.
Then r · a = A1x + A2y + A3z = f (x, y, z) = B. This is the equation of a planar surface, where
f = B. The relation of a to the surface becomes clear in the special case in which a = ax. We
obtain r · a = f (x) = x = B, where it is evident that a is a unit normal vector to the surface
(as a look ahead (Chapter 4), note that taking the gradient of f gives a).

1.7. Given the vector field E = 4zy2 cos 2xax + 2zy sin 2xay + y2 sin 2xaz for the region x , y , and z
less than 2, find:
a) the surfaces on which Ey = 0. With Ey = 2zy sin 2x = 0, the surfaces are 1) the plane z = 0,
with |x| < 2, |y| < 2; 2) the plane y = 0, with |x| < 2, |z| < 2; 3) the plane x = 0, with |y| < 2,
|z| < 2; 4) the plane x = π/2, with |y| < 2, |z| < 2.
b) the region in which Ey = Ez: This occurs when 2zy sin 2x = y2 sin 2x, or on the plane 2z = y,
with |x| < 2, |y| < 2, |z| < 1.
c) the region in which E = 0: We would have Ex = Ey = Ez = 0, or zy2 cos 2x = zy sin 2x =
y2 sin 2x = 0. This condition is met on the plane y = 0, with |x| < 2, |z| < 2.

, 1.8. Demonstrate the ambiguity that results when the cross product is used to find the angle between
two vectors by finding the angle between A = 3ax 2ay + 4az and B = 2ax + ay 2az. Does this
ambiguity exist when the dot product is used?
We use the relation A × B = |A||B| sin θn. With the given vectors we find
√ 2ay + az √ √
A × B = 14ay + 7az = 7 5 √ = 9 + 4 + 16 4 + 1 + 4 sin θ n
5
` ˛¸ x
±n

where n is identified as shown; we see that n can be positive or negative, as sin θ can be
positive or negative. This apparent sign ambiguity is not the real problem, however, as we
really w a √
n t t h√e mag
√ nitude of the angle anyway. Choosing the positive sign, we are left with
sin θ = 7 5/( 29 9) = 0.969. Two values of θ (75.7◦ and 104.3◦) satisfy this equation, and
hence the real ambiguity.

In using the d√o t product, we find A · B = 6 − 2 − 8 = − 4 = |A||B| cos θ = 3 29 cos θ, or
cos θ = −4/(3 29) = −0.248 ⇒ θ = −75.7◦. Again, the minus sign is not important, as we
care only about the angle magnitude. The main point is that only one θ value results when
using the dot product, so no ambiguity.

1.9. A field is given as
25
G= (xax + yay)
(x2 + y2)
Find:
a) a unit vector in the direction of G at P (3, 4, −2): Have Gp = 25/(9 + 16) ×(3, 4, 0) = 3ax + 4ay,
and |Gp| = 5. Thus aG = (0.6, 0.8, 0).
b) the angle between G and ax at P : The angle is found through aG · ax = cos θ. So cos θ =
(0.6, 0.8, 0) · (1, 0, 0) = 0.6. Thus θ = 53◦.
c) the value of the following double integral on the plane y = 7:
∫ 4∫ 2
G · aydzdx
0 0

∫ 4 ∫ 2 ∫ 4 ∫ 2 ∫ 4
25 25 350


1 4
= 350 × tan−1 − 0 = 26
7 7

1.10. By expressing diagonals as vectors and using the definition of the dot product, find the smaller angle
between any two diagonals of a cube, where each diagonal connects diametrically opposite corners,
and passes through the center of the cube:
Assuming a side length, b, two diagonal vectors would be A = √b (a x + √ ay + az) and B =
b(ax − ay + az). Now use A · B = |A||B| cos θ, or b (1 − 1 + 1) = ( 3b)( 3b) cos θ ⇒ cos θ =
2

1/3 ⇒ θ = 70.53◦. This result (in magnitude) is the same for any two diagonal vectors.
$17.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Solutions The Australian
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
31
Miembro desde
2 año
Número de seguidores
11
Documentos
729
Última venta
3 semanas hace
ExamPro Solutions

Welcome to ExamPro Solutions! Your trusted source for accurate, updated, and verified study guides, test banks, solution manuals, and solved exams. Our materials are carefully curated to help students understand key concepts, prepare for exams with confidence, and achieve top grades.

5.0

4 reseñas

5
4
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes