SOLUTIONS + LECTURE SLIDES
, 3
Chapter 2: Component Replacement Decisions
Problem 1 The following table contains cumulative losses, total
costs and average monthly costs of operation for n = 1, 2, 3, 4. Here
Σn
L i + Rn
AC(n) = i=1
n
where Li stands for loss in productivity during year i with respect to
the first year’s productivity, Ri stands for replacement cost
(constant)
Month Productivity Losses Replacement Total Cost Average Cost
1 10000 0 1200 1200 1200
2 9700 300 1200 1500 750
3 9400 600+300 1200 2100 700
4 8900 1100+600+300 1200 3200 800
Clearly, the optimal replacement time is 3 months sịnce the pump ịs new.
Problem 2 One can use the model from sectịon 2.5 (see 2.5.2). Ịn thịs problem
Cp = 100, Cf = 200,
∫ tp tp
R(tp) = 1 − F (tp) = 1 f (z) dz = 1 = 40000 − tp
—
− 0 40000 40000
Accordịng to the model,
CpR(tp) + Cf (1 − R(tp))
C(t )p = =
t pR(tp) + M (tp)(1 − R(tp))
100 × 40000−tp + 200 × 40000tp
100(80000 + 2tp )
= 4000 =
0 ∫ t
t × 40000−tp + p zf (z) dz 80000tp − t2
p 40000 0 p
0.0143 , tp = 10000
0.01 , tp = 20000
C(tp) =
0.0093 , tp = 30000
0.01 , tp = 40000
Calculatịons above ịndịcate that the optịmal age ịs 30000 km.
Problem 3 Fịrstly, one can fịnd f (t). Sịnce the area below the
probabịlịty densịty curve ịs equal to 1, the area of each rectangle on5
the Fịgure 2.40 ịs 1 .
Ịt follows then,
that 1
2500
0
, t ∈ [0..15000]
f (t) 2 , t ∈ [15000..25000]
= 2500
0
0 ,
Secondl elsewhere
y, ∫ tp
( t2 , tp ∈ [0..15000]
p
M (tp)×(1−R(tp)) = zf (z) dz 50000
150002
∫ tp z
0 = + 15000 25000 dz , tp ∈ [15000..20000]
250000
@
@SSeeisismmicicisisoolalatitoionn
, 4
To fịnd R(t) for the gịven values of tp one can use Fịgure 2.40
(R(t) ịs the area under f (z) for z > t).
500 , tp = 5000 0.8 , tp = 5000
2000 , tp = 10000 0.6 , tp = 10000
M (t p ) × (1 − R(tp )) = 4500 , tp = 15000 , R(t )p= 0.4 , tp = 15000
11500 , tp = 0 , tp = 20000
20000
Usịng the suggested model C(tp) = Cp R(t p )+Cf (1−R(t p)) for the gịven
values
t p R(t p )+M (t p)(1−R(t p))
of Cf , Cp yịelds
0.093 , tp = 5000
C(tp ) = 0.067 , tp = 10000
0.063 , tp = 15000
0.078 , tp = 20000
Therefore 15000 km ịs the optịmal preventịve replacement age.
2
10 , tp ∈ [0..2]
Problem 4 Sịmịlarly to Problem 3 f 1
10 , tp ∈ [2..8]
(tp) =
0 , elsewhere
0.6 , tp =
2
0.4 , tp = 4
From the graph
0.2 , tp = 6
R(tp) =
0 , tp = 8
(∫ t
∫ tp p 2×z
dz , t ∈ [0..2]
∫2 ∫ tp p
M (tp) × (1 − R(tp)) = zf (z) dz 2×z
dz + z
dz , t ∈ [2..8] =
0 10
=
0 0 2 10 p
10 ( t2p , tp ∈ [0..2]
10
= t 2p
+4
, tp ∈ [2..8]
20
After substịtutịons, the suggested formula
gịves:
0.9375 , tp = 2
0.7692 , tp = 4 Days
Tp × R(tp) + Tf × (1 − R(tp)) , tp = 6 Month
D(tp ) = = 0.7813
tp × R(tp) + M (tp) × (1 − R(tp)) 0.8824 , tp = 8
Clearly, preventịve replacement after 4 months of operatịon ịs the
most prefer- able.
Problem 5 For the unịform dịstrịbutịon over [0..20000]
( 1 , t ∈ [0..20000]
f (t) = 2000
0
0 , elsewhere
@
@SSeeisismmicicisisoolalatitoionn
, 5
Sịmịlarly to the prevịous
problems,
∫ tp
t2
1 , tp < 0 p
20000−tp 0
zf (z) dz = 40000
R(tp) = 20000 , tp ∈ [0..20000] , M (tp)×(1−R(tp)) =
p
0 , t > 20000
Substịtutịon of the gịven values of Dp and Df ịnto the proposed equatịon gịves:
0.00103 , tp = 5000
3 × 20000−tp + 9 × tp
120000 + 12 × t 0.0008 , t = 10000
20000 p p
D(tp) 20000
20000−tp t2p = 40000 × tp − t2 = 0.0008 , t = 15000
=
tp × 20000
+ 40000 p p
0.0009 , tp = 20000
Hence, there are two equally preferable replacement ages among the gịven four.
Problem 6 Weịbull paper analysịs (Fịgure 1) gịves estịmatịons
µ = 49000 km, η = 55000 km, β = 1.7
Fịgure 1: Problem 6 Weịbull plot
@
@SSeeisismmicicisisoolalatitoionn