100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

ISOM Midterm Exam Questions and Answers Latest Update 2025

Puntuación
-
Vendido
-
Páginas
6
Grado
A+
Subido en
09-11-2025
Escrito en
2025/2026

ISOM Midterm Exam Questions and Answers Latest Update 2025 Which component of a decision tree provides the predictions? - Answers leaf nodes A decision tree can have only two-way splits. - Answers false Each instance in the data set follows a single path in the decision tree. - Answers true Decision trees cannot handle numeric attributes when conducting attribute tests in interior nodes. - Answers false Suppose you build a decision tree to predict whether a customer makes a purchase on the internet (yes or no). A leaf has perfect purity when it contains which of the following? - Answers Either only customers who have made purchases or only customers who have not made purchases. Each attribute can appear only in a single split in the decision tree. - Answers false Decision trees can only handle categorical variables as attributes in interior nodes. - Answers false In order to estimate the generalization performance of a decision tree model, I estimate the performance using: - Answers the test set When using a similarity-moderated kNN to make predictions for two different data points, even if I always use all the instances in the data to generate predictions, I will not always generate the same prediction. - Answers true The accuracy metric is able to discriminate between the different types of correct classifications a classifier makes. - Answers false Laplace correction helps us avoid/prevent overfitting. - Answers True Logistic regression is a supervised data science method. - Answers True Logistic regression can used for numeric prediction tasks. - Answers False In the context of a decision tree, laplace correction will typically not impact my class probability estimations when we have a lot of instances in the leaf segmentation. - Answers True It is required to normalize the features before building a logistic regression model. - Answers False Decision trees can be used for class probability estimation tasks. - Answers True Logistic regression can typically generate fast predictions. - Answers True It is possible to capture non-linear patterns in the data when I use linear models, such as the logistic regression model. - Answers True When a logistic regression model is applied to a binary classification task, it generates a single decision boundary in the instance space. - Answers True Fitting graphs can used to assess the possibility of overfitting. - Answers True Increasing the number of nodes in a decision tree decreases the complexity of the model. - Answers False Suppose your model is overfitting. Which of the following is NOT a valid way to try and reduce the overfitting? - Answers Increase the model complexity. When we don't limit the depth of the decision tree, it is less likely to overfit. - Answers False Logistic Regression is likely to outperform Decision Trees when using a small training data set. - Answers True

Mostrar más Leer menos
Institución
ISOM
Grado
ISOM









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
ISOM
Grado
ISOM

Información del documento

Subido en
9 de noviembre de 2025
Número de páginas
6
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

ISOM Midterm Exam Questions and Answers Latest Update 2025

Which component of a decision tree provides the predictions? - Answers leaf nodes

A decision tree can have only two-way splits. - Answers false

Each instance in the data set follows a single path in the decision tree. - Answers true

Decision trees cannot handle numeric attributes when conducting attribute tests in interior
nodes. - Answers false

Suppose you build a decision tree to predict whether a customer makes a purchase on the
internet (yes or no). A leaf has perfect purity when it contains which of the following? - Answers
Either only customers who have made purchases or only customers who have not made
purchases.

Each attribute can appear only in a single split in the decision tree. - Answers false

Decision trees can only handle categorical variables as attributes in interior nodes. - Answers
false

In order to estimate the generalization performance of a decision tree model, I estimate the
performance using: - Answers the test set

When using a similarity-moderated kNN to make predictions for two different data points, even
if I always use all the instances in the data to generate predictions, I will not always generate the
same prediction. - Answers true

The accuracy metric is able to discriminate between the different types of correct
classifications a classifier makes. - Answers false

Laplace correction helps us avoid/prevent overfitting. - Answers True

Logistic regression is a supervised data science method. - Answers True

Logistic regression can used for numeric prediction tasks. - Answers False

In the context of a decision tree, laplace correction will typically not impact my class probability
estimations when we have a lot of instances in the leaf segmentation. - Answers True

It is required to normalize the features before building a logistic regression model. - Answers
False

Decision trees can be used for class probability estimation tasks. - Answers True

Logistic regression can typically generate fast predictions. - Answers True

It is possible to capture non-linear patterns in the data when I use linear models, such as the

, logistic regression model. - Answers True

When a logistic regression model is applied to a binary classification task, it generates a single
decision boundary in the instance space. - Answers True

Fitting graphs can used to assess the possibility of overfitting. - Answers True

Increasing the number of nodes in a decision tree decreases the complexity of the model. -
Answers False

Suppose your model is overfitting. Which of the following is NOT a valid way to try and reduce
the overfitting? - Answers Increase the model complexity.

When we don't limit the depth of the decision tree, it is less likely to overfit. - Answers False

Logistic Regression is likely to outperform Decision Trees when using a small training data set. -
Answers True

Which of the following strategies is likely to increase the chances of overfitting when using a
kNN model? - Answers Decreasing the k value

What strategies can help reduce overfitting in decision trees? - Answers Pruning;

Enforce a maximum depth for the decision tree;

Enforce a minimum number of instances in leaf nodes

Create new complex attributes (from existing attributes) which can be used to conduct attribute
tests in interior nodes: increases or decreases overfitting? - Answers increases

You have built a kNN model and you believe your model is overfitting the data. What of the
following option(s) would be appropriate in this case? - Answers Increase the value of k

In order to avoid the curse of dimensionality when building a kNN model, which of the following
options would be appropriate? - Answers Decrease the number of features we use

When building a kNN model, what happens to the boundaries when you increase the value of k?
- Answers The boundaries are smoothed out

Which penalty function can be used for automatic feature selection? - Answers L1-norm penalty

In a 10-fold cross-validation, how many different estimates do we get of a specific performance
metric (accuracy for instance)? - Answers 10

AUC larger than 0.5 indicates classifier performance better than the random guessing strategy. -
Answers true

High classification accuracy in the test set always indicates a good classifier. - Answers false
$10.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
joshuawesonga22 Liberty University
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
27
Miembro desde
7 meses
Número de seguidores
1
Documentos
9900
Última venta
1 día hace
Tutor Wes

Hi there! I'm Tutor Wes, a dedicated tutor with a passion for sharing knowledge and helping others succeed academically. All my notes are carefully organized, detailed, and easy to understand. Whether you're preparing for exams, catching up on lectures, or looking for clear summaries, you'll find useful study materials here. Let’s succeed together!

3.3

3 reseñas

5
1
4
0
3
1
2
1
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes