100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual Optical Networks 1st edition by Debasish Datta

Puntuación
-
Vendido
-
Páginas
47
Grado
A+
Subido en
30-10-2025
Escrito en
2025/2026

Solution Manual Optical Networks 1st edition by Debasish Datta

Institución
Optical Networks
Grado
Optical Networks











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Optical Networks
Grado
Optical Networks

Información del documento

Subido en
30 de octubre de 2025
Número de páginas
47
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

ALL 15 CHAPTER COVERED




SOLUTIONS MANUAL

, Errata


Context Present version in the book Corrected/changed version

Page 130, Exercise 2.7 5.27 nm 527 nm

Page 248, expression for Gd Gd = L/[2(M – 1) + L] Gd = L/[2(M – 1 + L)]
below Eq. 6.5.

Page 572, Exercise 14.6. Γ = 0 24 40 50 Γ = 0 50 25 60
24 0 24 40 25 0 50 60
24 24 0 0 25 30 0 30
50 0 40 0. 25 50 30 0.

Page 593, Exercise 15.7 0.1 µs 0.8 µs




ii

, Exercise Problems and Solutions for Chapter 2 (Technologies for Optical Networks)


2.1 A step-index multi-mode optical fiber has a refractive-index difference Δ = 1% and a core
refractive index of 1.5. If the core radius is 25 µm, find out the approximate number of propagating
modes in the fiber, while operating with a wavelength of 1300 nm.
Solution:
Δ = 0.01, n1 = 1.5, a = 25 μm, w = 1300 nm, and the number of modes Nmode is given by
𝐹𝐹 2
, with 𝐹𝐹 = 2𝜋𝜋𝑡𝑡
𝑁𝑁𝐴𝐴.
𝑁𝑁𝑑𝑑𝑜𝑜𝑛𝑛𝑛𝑛 =
The numerical aperture NA is obtained as 2 𝑠𝑠


1 2 1
𝑁𝑁𝐴𝐴= �𝑛𝑛2 2
− 𝑛𝑛 ≈ 𝑛𝑛 √2∆ = 1.5√0.02.
Hence, we obtain V parameter as,
2𝜋𝜋 × 25 × 10−6

𝐹𝐹 = 1300 × 10−9 × �1.5√0.02� = 25.632,
leading to the number of modes Nmode , given by
≈ 329.
25.6322

𝑁𝑁𝑑𝑑𝑜𝑜𝑛𝑛𝑛𝑛 =
2
2.2 A step-index multi-mode optical fiber has a cladding with the refractive index of 1.45. If it has a
limiting intermodal dispersion of 35 ns/km, find its acceptance angle. Also calculate the maximum
possible data transmission rate, that the fiber would support over a distance of 5 km.
Solution:
The cladding refractive index n2 =1.45, and the intermodal dispersion Dmod = 35 ns/km. Dmod is
expressed as
𝑛𝑛1 − 𝑛𝑛2
𝑛𝑛1 Δ 𝑛𝑛1 𝑛𝑛1 − 𝑛𝑛2 = 35 ns/km.
= �=
𝐷𝐷𝑑𝑑𝑜𝑜𝑛𝑛 ≈ 𝑐𝑐
� 𝑛𝑛1 𝑐𝑐
𝑐𝑐
Hence, (n1 – n2) = cDmod = (3 × 105) × (35 × 10-9) = 0.0105, and n1 = n2 + 0.0105 = 1.4605. Therefore,
we obtain NA as
2 2 2 2

𝑁𝑁𝐴𝐴 = �𝑛𝑛1 − 𝑛𝑛2 = �1.4605 − 1.45 = 0.174815,
and the acceptance angle is obtained as θA = sin-1(NA) = sin-1(0.174815) = 10.068o.
The pulse spreading due to dispersion should remain ≤ 0.5/r, with r as the data-transmission rate,
implying that r ≤ 0.5/(Dmod L). Hence, we obtain the maximum possible data transmission rate rmax
over L = 5 km as
0.5

𝑝𝑑𝑑𝑡𝑡𝑚𝑚 =
= 2.86 Mbps.
35 × 10−9 × 5
2.3 Consider that a step-index multi-mode optical fiber receives optical power from a Lambertian
source with the emitted intensity pattern given by I(θ) = I0 cosθ, where θ is the angle subtended by an
incident light ray from the source with the fiber axis. The total power emitted by the source is 1 mW
while the power coupled into the fiber is found to be - 4 dBm. Derive the relation between the

2.1

, launched s power s and s the s numerical s aperture s of s the s optical s fiber. s If s the s refractive s index s of
s the s core s is s 1.48, sdetermine sthe srefractive sindex sof sthe scladding.

Solution:
Transmit spower sPT s = s1 smW, sand sthe spower scoupled sinto sfiber sPC s = s- s4 sdBm s= s10- s0.4 s W s=
2 s
s0.3981 smW. s For sa sLambertian ssource, sthe scoupled spower sPC s = sNA × sPT sX s (for sderivation,
ssee sCherin s1983). sHence, 2 2 1
𝑃𝑃𝐶𝐶
1 implying sthat sn = sn – PC/PT s .
2s 2 2
NA = sPC/PT s = s0.3981. sFurther, s s 𝑁𝑁𝐴𝐴2 s s s
− s𝑛𝑛2 s 𝑃𝑃𝑇𝑇

s s s = s 𝑛𝑛2
Thus, swe sobtain sn2 s as s=




𝑛𝑛2 s= s√1.482 s− s0.3981 s= s1.34.
2.4 Consider sa s20 skm ssingle-mode soptical sfiber swith sa sloss sof s0.5 sdB/km sat s1330 snm sand s0.2
sdB/km sat s 1550 snm. sPresuming sthat sthe soptical sfiber sis sfed swith san soptical spower sthat sis slarge
senough sto sforce sthe s fiber s towards s exhibiting s nonlinear s effects, s determine s the s effective
s lengths s of s the s fiber s in s the s two s operating sconditions. sComment son sthe sresults.

Solution:
With sL s= s20 skm, sfirst swe sconsider sthe scase swith sfiber sloss sαdB s= s0.5 sdB/km. sSo, sthe sloss sα
sin sneper/km
is sdetermined sfrom sαdB s= s10log10[exp(α)] sas
α s= sln s(10αdB/10) s= sln(100.05) s= s0.1151.
Hence, swe sobtain sthe seffective sfiber slength sas
Lef sf s = s s[1 s– sexp(-αL)]/α
= s[(1 s– sexp(-0.1151 s× s20)]/0.1151 s= s7.82 skm.
With s αdB s = s 0.2 s dB/km, s we s similarly s obtain s Lef s f s = s 13.06 s km, s which s is s expected s because
s with s lower s attenuation, s the s power s decays s slowly s along s the s fiber s and s thus s the s fiber
s nonlinearity s effects s can s take s place sover slonger sfiber slength.

2.5 Consider san soptical s communication slink soperating sat s1550 snm sover sa s60 skm s optical sfiber
shaving sa s loss sof s 0.2 sdB/km. s Determine s the sthreshold spower sfor sthe sonset s of s SBS sin sthe
-11 s
sfiber. s Given: s SBS sgain s coefficient s gB s= s s5 s ×10 m/W, s seffective s sarea s of s cross-section s
2
sof sthe s fiber s Aeff s= s 50 s µm , s sSBS s bandwidth s= s20 sMHz, slaser sspectral swidth s= s200 sMHz.

Solution:
With sαdB s= s0.2 sdB/km sat s1550 snm, swe sobtain sα s= sln s(10αdB/10) s= sln(100.02) s=
s0.0461. s Hence, sfor sL s= s60 skm, swe sobtain sLef sf s s sas
Lef sf s s s= s[1 s– sexp(-αL)]/α
= s[1 s– sexp(-0.0461 s× s60)]/0.0461 s s= s20.327 skm.
With sAeff s= s50 sμm2, sgB s= s5 s× s10-11 s m/W, sand sassuming sthe spolarization-matching sfactor sto sbe
sηp s = s2, swe s obtain sthe sSBS sthreshold spower sas
21 s s s 𝜂𝜂𝑜𝑜 s 𝐴𝐴𝑛𝑛𝑓𝑓𝑓𝑓 𝛿𝛿𝛿𝛿 21 s × s 2 s × s 50 s s× 200
s 10−12


𝑃𝑃𝑡𝑡ℎ s (𝑆𝑆𝐵𝐵𝑆𝑆) s =

2.2
$15.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Testbankx Walden University
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
42
Miembro desde
1 año
Número de seguidores
0
Documentos
775
Última venta
20 horas hace
Test Banks and Solution Manuals

At my shop, I specialize in offering high-quality Test Banks that are tailored to help students prepare effectively for exams. Each Test Bank is carefully selected and updated to ensure it aligns with the latest textbook editions, providing accurate and relevant content. My goal is to provide a reliable resource that enhances students' learning experience and boosts their academic performance.

4.9

172 reseñas

5
167
4
1
3
0
2
2
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes