100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

solutions manual to Advanced Engineering Mathematics with MATLAB, 5th Edition. Duffy

Puntuación
-
Vendido
-
Páginas
600
Grado
A+
Subido en
19-10-2025
Escrito en
2025/2026

solutions manual to Advanced Engineering Mathematics with MATLAB, 5th Edition. Duffy solutions manual to Advanced Engineering Mathematics with MATLAB, 5th Edition. Duffy solutions manual to Advanced Engineering Mathematics with MATLAB, 5th Edition. Duffy solutions manual to Advanced Engineering Mathematics with MATLAB, 5th Edition. Duffy solutions manual to Advanced Engineering Mathematics with MATLAB, 5th Edition. Duffy

Mostrar más Leer menos
Institución
Advanced Engineering Mathemati
Grado
Advanced Engineering Mathemati











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Advanced Engineering Mathemati
Grado
Advanced Engineering Mathemati

Información del documento

Subido en
19 de octubre de 2025
Número de páginas
600
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

All Chapters Covered
qe qe




SOLUTIONS

,TableofContents qe qe




Chapter 1: First-Order Ordinary Differential Equations 1
qe qe qe qe qe qe




qe Chapter 2: Higher-Order Ordinary Differential Equations
qe qe qe qe qe




qe Chapter 3: Linear Algebra
qe qe qe




Chapter 4: Vector Calculus
qe qe qe




qe Chapter 5: Fourier Series
qe qe qe




q e Chapter 6: The Fourier Transform
qe qe qe qe




Chapter7:TheLaplaceTransform
qe qe qe qe




qe Chapter 8: The Wave Equation
qe qe qe qe




qe Chapter 9: The Heat Equation
qe qe qe qe




qe Chapter 10: Laplace’s Equation
qe qe qe




Chapter 11: The Sturm-Liouville Problem
qe qe qe qe




qe Chapter 12: Special Functions
qe qe qe




Appendix A: Derivation of the Laplacian in Polar Coordinates Appendix
qe qe qe qe qe qe qe qe qe




qe B: Derivation of the Laplacian in Spherical Polar Coordinates
qe qe qe qe qe qe qe qe

, Solution Manual qe




Section 1.1 qe




1. first-order, linear
q e qe 2. first-order, nonlinear
q e qe




3. first-order, nonlinear
q e qe 4. third-order, linear
q e q e




5. second-order, linear
q e q e 6. q e first-order, nonlinear q e




7. q e third-order, nonlinear q e 8. second-order, linear
q e q e




9. second-order, nonlinear
q e q e 10. q e first-order, nonlinear q e




11. q e first-order, nonlinear q e 12. second-order, nonlinear
q e q e




13. first-order, nonlinearq e qe 14. third-order, linear q e qe




15. second-order, nonlinearq e q e 16. q e third-order, nonlinear q e




Section 1.2 qe




1. Because the differential equation can be rewritten e−y dy = xdx, integra-
qe qe qe qe qe qe qe qe qe qe qe




tion immediately gives —e−y =2 1x2 — C, or y = —ln(C —x2/2).
qe qe qe qe qe qe e
q qe q
e qe qe qe qe e
q qe q
e




2. Separating variables, we have that dx/(1 + x2) = dy/(1 + y2). Integrating qe qe qe qe qe qe qe qe qe qe qe qe




this equation, we find that —
qe tan−1(x)
qe

tan−1(y) = tan(C), or (x qe qe qe qe q e qe qe qe qe




q y)/(1+xy) = C.
e qe qe




3. Because the differential equation can be rewritten ln(x)dx/x = y dy, inte-
qe qe qe qe qe qe qe qe qe qe qe




gration immediately gives
qe
2
1
ln2(x) + C =
2
y , or y2(x) — ln2(x) = 2C.
1 2
qe qe q e qe qe qe qe q e e
q qe qe qe qe qe qe




4. Because the differential equation can be rewritten y2 dy = (x + q e q e q e q e q e q e q e qe q e q e qe




x3) dx, integration immediately gives y3(x)/3 = x2/2 + x4/4 + C.
qe qe qe qe qe qe qe qe qe qe qe qe




5. Because the differential equation can be rewritten y dy/(2+y2) = xdx/(1+
q e q e q e q e q e q e q e q e q e q e



x2), integration immediately gives 1 ln(2 + y2) = 1 ln(1 + x2) + 1 ln(C), or
qe qe qe q e qe qe qe qe q e qe qe qe qe qe qe qe


2 2 2
2 + y2(x) = C(1 + x2).
qe qe qe qe qe qe




6. Because the differential equation can be rewritten dy/y1/3 = q e q e q e q e q e q e q e

q e
q e



1
q x1/3 dx, integration immediately gives 3y2/3 = 3x4/3 + 3C, or y(x) =
e qe qe qe qe q e e
q qe q e e
q qe qe e
q qe qe qe


qe
3/2 2 4 2 2
qe
x4/3 + C qe qe .

1

, 2 Advanced Engineering Mathematics with q e q e q e




qMATLAB e




7. Because the differential equation can be rewritten e−y dy = ex dx, integra-
qe qe qe qe qe qe qe qe qe qe qe qe




tion immediately gives —e−y = ex — C, or y(x) = —ln(C —ex).
qe qe qe qe qe qe qe q
e qe qe qe qe e
q qe q
e




8. Because the differential equation can be rewritten dy/(y2 + 1) = (x3
qe qe qe qe qe qe qe qe qe qe qe




+ 5)dx, integration immediately gives tan−1(y) = 1x4 + 5x + C,
qe qe qe q e q e q e q e q e q e e
q qe qe qe qe




q or y(x) =
e q e q e

q e 4 q e


tan 4 1 x4 + 5x + C . qe
qe qe qe qe




9. Because the differential equation can be rewritten y2 dy/(b — ay3) = dt,
q e q e q e q e
q e
q e q e qe qe qe q e q e



3 y
integration immediately gives ln[b — ay ] y0 = —3at, 3 — b)/(ay
q e
3
0 — b) = q e q e qe qe qe
q e q e q e
q
e qe q
e qe



or (ay
q e

q e q e




e−3at. q e




10. Because the differential equation can be written du/u = dx/x2, integra-
qe qe qe qe qe qe qe qe qe qe




tion immediately gives u = Ce−1/x or y(x) = x + Ce−1/x.
qe qe q e qe qe qe q e qe qe qe qe qe




11. From the hydrostatic equation and ideal gas law, —dp/p = g
q e q e q e q e q e q e q e q e qe




dz/(RT ). Substituting for T (z),
qe qe qe qe qe qe


dp g
=— dz. qe e
q


p R(T 0 — Γz) q e
q
e




Integrating from 0 to z, qe qe qe qe




p(z) g T0 —Γz p(z) T0 — Γ z g/(RΓ)
qe qe qe qe qe q
e
q e q e
qe q
e q e


ln = ln =
qe qe


, or .
p0 RΓ T0 qe p0 T0


12. For 0 < z < H, we simply use the previous problem.
q e q e q e q e q e q e q e q e q e q e q e q e At
z = H, the pressure is
q e q e q e q e qe qe




T0 —ΓH g/(RΓ) qe

qe
q
e
q
e

q e


p(H) = p0 . qe qe


T0
Then we follow the example in the text for an isothermal atmosphere
q e q e q e q e q e q e q e q e q e q e q e




for
q e




z ≥ H. qe qe




13. Separating variables, we find that qe qe qe qe




dV dV R dV dt
— =— .
qe



= q e qe qe e
q


V q e + RV 2/S
qe qe q e V q e q e S(1 + RV/S) RC qe qe q e qe




Integration yields q e




q e q e q e


V t
=—
q e q e q e


ln qe e
q + ln(C).
qe


1 + RV/S qe qe RC

Upon applying the initial conditions,
q e q e q e q e




V0 RV0/S
e−t/(RC) + e−t/(RC)V (t).
q e q e q e q e

V (t) = qe qe q e
qe q e
q e qe


1 + RV0/S
qe 1 + RV0/S
qe qe qe
$21.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
NursingAssistant

Conoce al vendedor

Seller avatar
NursingAssistant University Of California - Los Angeles (UCLA)
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
3 meses
Número de seguidores
0
Documentos
484
Última venta
-
REALITIEXAMS STORE (CALIBRE)

Nursing Being my main profession line, My mission is to be your LIGHT in the dark. If you're worried or having trouble in nursing school, I really want my notes to be your guide! I know they have helped countless others get through and that's all I want for YOU! I have essential guides that are A+ graded, I am a very friendly person feel free to inbox me......

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes