100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Math 225 Final Exam questions with answers.

Puntuación
-
Vendido
-
Páginas
11
Grado
A+
Subido en
19-10-2025
Escrito en
2025/2026

Math 225 Final Exam questions with answers.










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Información del documento

Subido en
19 de octubre de 2025
Número de páginas
11
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Math 225 Final Exam questions with |\ |\ |\ |\ |\ |\




answers


If the columns of A are linearly dependent - CORRECT ANSWERS
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


✔✔Then the matrix is not invertible and an eigenvalue is 0
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\




Note that A−1 exists. In order for λ−1 to be an eigenvalue of
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


A−1, there must exist a nonzero x such that Upper A Superscript
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


negative 1 Baseline Bold x equals lambda Superscript negative 1
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\


Baseline Bold x . A−1x=λ−1x. Suppose a nonzero x satisfies
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\


Ax=λx. What is the first operation that should be performed on
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


Ax=λx so that an equation similar to the one in the previous step
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


can be obtained? - CORRECT ANSWERS ✔✔Left-multiply both
|\ |\ |\ |\ |\ |\ |\ |\ |\


sides of Ax=λx by A−1. |\ |\ |\ |\




Show that if A2 is the zero matrix, then the only eigenvalue of A
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


is 0. - CORRECT ANSWERS ✔✔If Ax=λx for some x≠0, then
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


0x=A2x=A(Ax)=A(λx)=λAx=λ2x=0. Since x is nonzero, λ must |\ |\ |\ |\ |\ |\ |\


be zero. Thus, each eigenvalue of A is zero.
|\ |\ |\ |\ |\ |\ |\ |\




Finding the characteristic polynomial of a 3 x 3 matrix - CORRECT
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


ANSWERS ✔✔Add the first two columns to the right side of the
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


matrix and then add the down diagonals and subtract the up
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


diagonals


In a simplified n x n matrix the Eigenvalues are - CORRECT
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


ANSWERS ✔✔The values of the main diagonal |\ |\ |\ |\ |\ |\

, Use a property of determinants to show that A and AT have the
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


same characteristic polynomial - CORRECT ANSWERS ✔✔Start
|\ |\ |\ |\ |\ |\ |\


with detAT−λI)=detAT−λI)=det(A−λI)T. Then use the formula det
|\ |\ |\ |\ |\ |\ |\


AT=det A. |\




The determinant of A is the product of the diagonal entries in A.
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


Select the correct choice below and, if necessary, fill in the
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


answer box to complete your choice. - CORRECT ANSWERS
|\ |\ |\ |\ |\ |\ |\ |\ |\


✔✔The statement is false because the determinant of the
|\ |\ |\ |\ |\ |\ |\ |\ |\




2×2 matrix A= [ 1 1 (1 1 below) ] is not equal to the product of
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


the entries on the main diagonal of A.
|\ |\ |\ |\ |\ |\ |\




An elementary row operation on A does not change the
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\


determinant. Choose the correct answer below. - CORRECT |\ |\ |\ |\ |\ |\ |\ |\


ANSWERS ✔✔The statement is false because scaling a row also
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\


scales the determinant by the same scalar factor.
|\ |\ |\ |\ |\ |\ |\




(det A)(det B)=detAB. Select the correct choice below and, if
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\


necessary, fill in the answer box to complete your choice. -|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


CORRECT ANSWERS ✔✔The statement is true because it is the
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\


Multiplicative Property of determinants. |\ |\ |\




If λ+5 is a factor of the characteristic polynomial of A, then 5 is
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


an eigenvalue of A. Select the correct choice below and, if
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


necessary, fill in the answer box to complete your choice. -|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


CORRECT ANSWERS ✔✔The statement is false because in order
|\ |\ |\ |\ |\ |\ |\ |\ |\


for 5 to be an eigenvalue of A, the characteristic polynomial
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


would need to have a factor of λ−5.
|\ |\ |\ |\ |\ |\ |\
$21.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
EXAMSTUDYPLUG Stanford University
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
301
Miembro desde
3 año
Número de seguidores
107
Documentos
17722
Última venta
2 días hace
GRADE BUDDY

Welcome to My Page! Are you looking for high-quality study resources to ace your exams or better understand your coursework? You've come to the right place! I'm passionate about sharing my knowledge and helping students succeed academically. Here, you'll find a wide range of well-organized notes, study guides, and helpful materials across various subjects, including Maths ,nursig, Biology, History, etc.. Each resource is carefully crafted with detailed explanations, clear examples, and relevant key points to help simplify complex concepts. Whether you're preparing for a test, reviewing lectures, or need extra support, my resources are designed to make your learning experience smoother and more effective. Let me be a part of your academic journey, and feel free to reach out if you have any questions or need personalized assistance!

Lee mas Leer menos
4.5

230 reseñas

5
155
4
50
3
13
2
5
1
7

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes