answers
If the columns of A are linearly dependent - CORRECT ANSWERS
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
✔✔Then the matrix is not invertible and an eigenvalue is 0
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\
Note that A−1 exists. In order for λ−1 to be an eigenvalue of
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
A−1, there must exist a nonzero x such that Upper A Superscript
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
negative 1 Baseline Bold x equals lambda Superscript negative 1
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\
Baseline Bold x . A−1x=λ−1x. Suppose a nonzero x satisfies
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\
Ax=λx. What is the first operation that should be performed on
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
Ax=λx so that an equation similar to the one in the previous step
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
can be obtained? - CORRECT ANSWERS ✔✔Left-multiply both
|\ |\ |\ |\ |\ |\ |\ |\ |\
sides of Ax=λx by A−1. |\ |\ |\ |\
Show that if A2 is the zero matrix, then the only eigenvalue of A
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
is 0. - CORRECT ANSWERS ✔✔If Ax=λx for some x≠0, then
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
0x=A2x=A(Ax)=A(λx)=λAx=λ2x=0. Since x is nonzero, λ must |\ |\ |\ |\ |\ |\ |\
be zero. Thus, each eigenvalue of A is zero.
|\ |\ |\ |\ |\ |\ |\ |\
Finding the characteristic polynomial of a 3 x 3 matrix - CORRECT
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
ANSWERS ✔✔Add the first two columns to the right side of the
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
matrix and then add the down diagonals and subtract the up
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
diagonals
In a simplified n x n matrix the Eigenvalues are - CORRECT
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
ANSWERS ✔✔The values of the main diagonal |\ |\ |\ |\ |\ |\
, Use a property of determinants to show that A and AT have the
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
same characteristic polynomial - CORRECT ANSWERS ✔✔Start
|\ |\ |\ |\ |\ |\ |\
with detAT−λI)=detAT−λI)=det(A−λI)T. Then use the formula det
|\ |\ |\ |\ |\ |\ |\
AT=det A. |\
The determinant of A is the product of the diagonal entries in A.
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
Select the correct choice below and, if necessary, fill in the
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
answer box to complete your choice. - CORRECT ANSWERS
|\ |\ |\ |\ |\ |\ |\ |\ |\
✔✔The statement is false because the determinant of the
|\ |\ |\ |\ |\ |\ |\ |\ |\
2×2 matrix A= [ 1 1 (1 1 below) ] is not equal to the product of
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
the entries on the main diagonal of A.
|\ |\ |\ |\ |\ |\ |\
An elementary row operation on A does not change the
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\
determinant. Choose the correct answer below. - CORRECT |\ |\ |\ |\ |\ |\ |\ |\
ANSWERS ✔✔The statement is false because scaling a row also
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\
scales the determinant by the same scalar factor.
|\ |\ |\ |\ |\ |\ |\
(det A)(det B)=detAB. Select the correct choice below and, if
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\
necessary, fill in the answer box to complete your choice. -|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
CORRECT ANSWERS ✔✔The statement is true because it is the
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\
Multiplicative Property of determinants. |\ |\ |\
If λ+5 is a factor of the characteristic polynomial of A, then 5 is
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
an eigenvalue of A. Select the correct choice below and, if
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
necessary, fill in the answer box to complete your choice. -|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
CORRECT ANSWERS ✔✔The statement is false because in order
|\ |\ |\ |\ |\ |\ |\ |\ |\
for 5 to be an eigenvalue of A, the characteristic polynomial
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\
would need to have a factor of λ−5.
|\ |\ |\ |\ |\ |\ |\