100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Otro

14A- Functional group chemistry for designer molecules (FULL ASSIGNMENT)

Puntuación
-
Vendido
-
Páginas
16
Subido en
12-10-2025
Escrito en
2024/2025

THIS IS A DISTINCTION LEVEL ASSIGNMENT This assignment explores the chemistry of key organic functional groups and their roles in creating designer molecules. It covers the structure, naming, reactions, and practical uses of compounds such as haloalkanes, alcohols, ketones, and carboxylic acids. The document explains the types of reactions these compounds undergo—such as nucleophilic substitution, oxidation, elimination, addition, and esterification—and the conditions required for each. It also highlights the commercial and industrial importance of these compounds, for example, their uses in pharmaceuticals, solvents, perfumes, plastics, and textiles. The report further compares addition and substitution reactions, showing how they differ in mechanism and application. The assignment concludes with practical synthetic pathways, such as: Making ethyl ethanoate using ethanol and ethanal Making N-ethyl ethanamide using chloroethane and ethanoyl chloride Overall, the project demonstrates an understanding of functional group transformations and their relevance in the design and synthesis of useful organic molecules.

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Nivel de Estudio
Editores
Tema
Curso

Información del documento

Subido en
12 de octubre de 2025
Número de páginas
16
Escrito en
2024/2025
Tipo
Otro
Personaje
Desconocido

Temas

Vista previa del contenido

Functional group chemistry for designer molecules

Haloalkanes

Introduction

Haloalkanes are molecules that contain a hydrogen atom bonded to an alkane. Haloalkanes that
have one halogen have the general formula C n H 2 n+ 1X with X representing the halogen. For
haloalkanes like 2-bromopropane, the numbers are used to show the position of the halogen in the
molecule. For haloalkanes such as 1,2 dichloroethane, you can see that the molecule has two
halogen atoms hence, the word ‘di’ in the name. for 2-bromo-1- chloropropane, because they have
different halogens, they are listed alphabetically and not by position number.




The bond between a carbon and halogen atom is polar, this polarity affects the reactivity and
physical properties of the haloalkanes. The halogen is always electronegative which means that
there is a pair of electrons in the covalent bond between the carbon and halogen atom with the
electrons being closer to the halogen atom, causing the halogen atom to become slightly negative
and the carbon to become slightly positive.

Haloalkanes have a higher boiling point compared to their equivalent alkanes because alkanes have
Van der Waals forces between then and haloalkanes although they also have van der Waals forces
between them the polarity of the carbon to halogen bond contain permanent dipole-dipole forces
which are stronger then van der Waals forces requiring more energy to break. This makes them
useful to make things like alcohols, nitrates and alkanes. Finally, haloalkanes are insoluble in water
because haloalkanes cannot form hydrogen bonds. However, haloalkanes are soluble in non-polar
solvents such as cyclohexane.

Commercial importance

Halagoalkanes are used as:

 Flame retardants

,  Fire extinguishers
 Solvents
 Pharmaceuticals

Halogenoalkanes can react with a hydroxide ion to produce an alcohol, as shown below.

Equation

RCH 2 CH 2 CL + NaOH −¿ ¿  RCH 2 CH 2 OH +NaCL−¿¿

Chloroalkane+ sodium hydroxide  ethanol+ sodium chloride

Reaction conditions for halogenoalkanes reacting with hydroxide ions

 Warm sodium hydroxide
 Under reflux

Mechanism: nucleophilic substitution

Halogenoalkanes can also react with cyanide ion to produce nitriles, as shown below

Equation

CH 3 CH 2CL+ KCN CH 3 CH 2 CH 2 CN +¿ Cl−¿¿

Chloroethane + potassium cyanide propionitrile + chloride ion

Reaction conditions for halogenoalkanes reacting with cyanide ions

 Warm ethanoic potassium cyanide
 Under reflux

Mechanism: nucleophilic substitution

Halogenoalkanes can also react with ammonia as shown below

Equation

CH 3 CH 2CL + NH 3  CH 3 CH 2CN + Cl−¿¿

Chloroethane+ ammonia  ethyl ammonium + chloride ion

Reaction conditions for halogenoalkanes reacting with ammonia

 Hot ethanoic ammonia

Mechanism: nucleophilic substitution

Alcohols

All alcohols have an alcohol functional group which is known as a hydroxyl group. To name a alcohol
you start with the name of the alkane for example ethanol is based off of the alkane ethane, you
remove the final ‘e’ and add the suffix ‘ol’ to make ethanol. Numbers can be used to show which
carbon atom is bonded to the hydroxyl group for example propan-2-ol. Alcohols are polar which
allow them to dissolve organic compounds which do not mix well with water.

, Commercial importance

Alcohols are used in perfumes and cosmetics but in industry they are used to make carboxylic acids
and aldehydes. Ethanol is also used for dyes, paints and varnishes and is used to make organic
compounds like chloroform. Methanol is used to make plastics, paints and explosives

Primary alcohols can be oxidised to produce an aldehyde and are then oxidized further to produce
carboxylic acids

Equation for aldehyde

concentated H 2 SO 4
CH 3 CH 2OH + [O] --->CH 3 CH O + H 2O

[O] = K 2 Cr2 O7 / potassium dichromate

concentated H 2 SO 4
Ethanol + acidified potassium dichromate --- > ethanal + water

An aldehyde is made by removing 2 hydrogens from ethanol for it to bond with oxygen from the
oxidising agent to form a water molecule and ethanal.

Equation for carboxylic acid

CH 3 CH O + [O]  CH 3 COOH

[O] = K 2 Cr2 O7 / potassium dichromate

Ethanal + oxidising agent (potassium dichromate)  ethanoic acid

A carboxylic acid is formed when ethanal is oxidised to form a carboxylic acid

Conditions of oxidizing primary alcohols

 Reflux
 Distillation
$28.46
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
humerapatel

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
humerapatel Aberystwyth University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
Nuevo en Stuvia
Miembro desde
2 meses
Número de seguidores
0
Documentos
4
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes