e e e e e
14th Global Edition By Richard C. Dorf
e e e e e e
Chapters 1 - 13, Complete
e e e e
,T A B L E - O F - C O N T E N T S
e e e e e e e e e e e e e e e e e e e e e e e e e e e e
1. Introduction to Control Systems ............................................................. 1
e e e
2. Mathematical Models of Systems ......................................................... 20
e e e
3. State Variable Models............................................................................ 79
e e
4. Feedback Control System Characteristics........................................... 126
e e e
5. The Performance of Feedback Control Systems............................... 166
e e e e e
6. The Stability of Linear Feedback Systems ...................................... 216
e e e e e
7. The Root Locus Method .................................................................... 257
e e e
8. Frequency Response Methods ............................................................. 359
e e
9. Stability in the Frequency Domain.................................................... 420
e e e e
10. The Design of Feedback Control Systems ........................................ 492
e e e e e
11. The Design of State Variable Feedback Systems ............................ 574
e e e e e e
12. Robust Control Systems ..................................................................... 633
e e
13. Digital Control Systems...................................................................... 691
e e
, C H A P T E R
e e e e e e e e e 1
Introduction to Control Systems e e e
There are, in general, no unique solutions to the following exercises and
e e e e e e e e e e e
problems. Other equally valid block diagrams may be submitted by the
e e e e e e e e e e e
student.
e
Exercises
E1.1 A microprocessor controlled laser system:
e e e e
Error Current i(t) e
Desired Power
epower - out
eoutput
Measured
e power
E1.2 A driver controlled cruise control system:
e e e e e
Controller
Foot pedal
Desired
e
Carand e
Actual
Driver
espeed - Engine
e
auto
espeed
Measurement
Speedometer
Visual indication of speed
e e
E1.3 e e Although the principle of conservation of momentum explains much of
e e e e e e e e e
the process of fly-casting, there does not exist a comprehensive scientific
e e e e e e e e e e e
explanation of how a fly-fisher uses the small backward and forward mo- tion
e e e e e e e e e e e e e
of the fly rod to cast an almost weightless fly lure long distances (the
e e e e e e e e e e e e e e
1
, 2 CHAPTER 1 e e e Introduction to Control Systems e e e
current world-record is 236 ft). The fly lure is attached to a short invisible
e e e e e e e e e e e e e
leader about 15-ft long, which is in turn attached to a longer and thicker
e e e e e e e e e e e e e e
Dacron line. The objective is cast the fly lure to a distant spot with dead- eye
e e e e e e e e e e e e e e e e
accuracy so that the thicker part of the line touches the water first and then
e e e e e e e e e e e e e e e
the fly gently settles on the water just as an insect might.
e e e e e e e e e e e e
Wind
Controller
Mind and e
Actual
of
e - body of the
e e e
e e cast e positio
n e of
fly fly-fisher
e
ethe efly
Measurement
e of
Visual eindication e
e ofethe eposition
eof e the efly
E1.4 An autofocus camera control system:
e e e e
One-way trip time for the beam
e e e e e
Conversionefactor
1
e
e (speed e of e light e or
sound)
Emitter/ Distance eto esubject
e
Lens