100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solutions Manual Counting 2nd Edition By Khee Meng Koh, Eng Guan Tay

Puntuación
-
Vendido
-
Páginas
208
Grado
A+
Subido en
02-10-2025
Escrito en
2025/2026

This is a complete solutions manual for Counting 2nd Edition By Khee Meng Koh, Eng Guan Tay. It provides detailed, step-by-step answers to all exercises and problems.

Institución
Counting
Grado
Counting











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Counting
Grado
Counting

Información del documento

Subido en
2 de octubre de 2025
Número de páginas
208
Escrito en
2025/2026
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Solutions Manual
Counting 2nd Edition

By
K. M. Koh,
Eng Guan Tay


( All Chapters Included - 100% Verified Solutions )




1

, 1
The Addition Principle


The Addition Principle
Suppose that there are n1 ways for the event E1 to occur
and n2 ways for the event E2 to occur. If all these ways (1.1)
are pairwise distinct, then the number of ways for E1 or
E2 to occur is n1 + n2 .

(AP) If A1 , A2 , . . . , An , n ≥ 2, are finite sets which
are pairwise disjoint, i.e. Ai ∩ Aj = ∅ for all i, j with
1 ≤ i < j ≤ n, then
|A1 ∪ A2 ∪ · · · ∪ An | = |A1 | + |A2 | + · · · + |An |, (1.3)
or in a more concise form:
 
n   n
 
 Ai  = |Ai |.
 
i=1 i=1




1.1 We can use 6 pieces of to cover a 6 × 3 rectangle, for
example, as shown below:




In how many different ways can the 6×3 rectangle be so covered?
Solution Systematically list as follows:



Thus, there are 6 ways.

27

,8 Counting: Solutions Manual


1.2 Do the same problem as in Example 1.3 for 1 × 1, 2 × 2, 3 × 3 and
5 × 5 square arrays. Observe the pattern of your results. Find
in general the number of squares contained in an n × n square
array, where n ≥ 2.

Solution The squares in the array can be divided into the following
sets:
A1 : the set of 1×1 squares,
A2 : the set of 2×2 squares,
A3 : the set of 3×3 squares,
A4 : the set of 4×4 squares, and
A5 : the set of 5×5 squares.
For the 1 × 1 array, the number of squares = |A1 | = 1 = 12 .
For the 2 × 2 array, the number of squares = |A1 | + |A2 | = 4 + 1 =
22 + 12 = 5.
For the 3 × 3 array, the number of squares = |A1 | + |A2 | + |A3 | =
9 + 4 + 1 = 32 + 22 + 12 = 14.
For the 5 × 5 array, the number of squares = |A1 | + |A2 | + |A3 | +
|A4 | + |A5 | = 25 + 16 + 9 + 4 + 1 = 52 + 42 + 32 + 22 + 12 = 55.
The pattern suggests that the number of squares in an n×n array
 
is 12 + 22 + · · · + n2 (= nr=1 r 2 ). Recall that nr=1 r 2 = n6 (n + 1)
(2n + 1).
We may prove the conjecture by induction. However, here we shall
give the solution by another method.
Consider the following n × n square array:




3

, The Addition Principle 9


We examine the 2×2 squares and note that the bottom-left corner
of each such square is unique. If we consider the n×n square array as
an (n + 1) × (n + 1) grid with both x-coordinates and y-coordinates
from 0 to n, then each coordinate (x, y) such that x = 0, 1, 2, . . . , n−2
and y = 0, 1, 2, . . . , n − 2 is the bottom-left corner of exactly one 2× 2
square. The number of such points equals (n − 1)(n − 1) and thus
the number of 2 × 2 squares is (n − 1)2 .
More generally, each coordinate (x, y) such that x = 0, 1,
2, . . . , n − r and y = 0, 1, 2, . . . , n − r is the bottom-left corner
of exactly one r × r square. The number of such points equals
(n − r + 1)(n − r + 1) and thus the number of r × r squares is
(n − r + 1)2 .
 
Thus, total number of squares = nr=1 (n − r + 1)2 = nr=1 r 2 .

Since nr=1 r 2 = n6 (n + 1)(2n + 1), we have:
total number of squares = n6 (n + 1)(2n + 1).

1.3 How many squares are there in
(i) the following 4 × 3 array (where each cell is a square)?




(ii) an n × 3 array (where each cell is a square), with n ≥ 5?
Solution (i) Consider the 3 × 3 subarray on the left. From the solu-
tion to Exercise 1.2, we have that the number of squares in this
subarray is 14.
Now count the number of squares with some portion in the last
column of the array.
Number of 1 × 1 squares = 3.
Number of 2 × 2 squares = 2.
Number of 3 × 3 squares = 1.
Thus, the total number of squares = 14 + 3 + 2 + 1 = 20.
(ii) Using the method in the solution of Exercise 1.2, we observe that
each coordinate (x, y) such that 0 ≤ x ≤ n − r and 0 ≤ y ≤ 3 − r
4
$28.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
reckmila

Conoce al vendedor

Seller avatar
reckmila Massachusetts Institute Of Technology
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2
Miembro desde
2 meses
Número de seguidores
0
Documentos
28
Última venta
2 semanas hace
Miss Fullmark

High-quality solutions manuals crafted to help you master every chapter and score full marks.

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes